cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136586 Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,n-2).

This page as a plain text file.
%I A136586 #3 Mar 30 2012 17:34:23
%S A136586 0,0,1,-1,0,1,0,-4,0,1,6,0,-8,0,1,0,28,0,-13,0,1,-40,0,78,0,-19,0,1,0,
%T A136586 -246,0,171,0,-26,0,1,336,0,-888,0,325,0,-34,0,1,0,2616,0,-2455,0,561,
%U A136586 0,-43,0,1,-3456,0,11670,0,-5745,0,903,0,-53,0,1
%N A136586 Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,n-2).
%C A136586 Row sums are:
%C A136586 {0, 1, 0, -3, -1, 16, 20, -100, -260, 680, 3320}
%C A136586 The double function Integration is alternating:
%C A136586 Table[Integrate[Exp[ -x^2/2]*P2[x, n]*P2[x, m], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0, 10}];
%C A136586 Four Initial conditions were necessary for starting this recursion:
%C A136586 P[x, 0] = 1; P[x, 1] = x; P[x, -1] = 0; P[x, -2] = -1;
%F A136586 H2(x,n)=A137286(x,n)+A137286(x,n-2)
%e A136586 {0},
%e A136586 {0, 1},
%e A136586 {-1, 0, 1},
%e A136586 {0, -4, 0, 1},
%e A136586 {6, 0, -8, 0, 1},
%e A136586 {0, 28, 0, -13, 0, 1},
%e A136586 {-40, 0, 78, 0, -19, 0, 1},
%e A136586 {0, -246, 0, 171, 0, -26, 0,1},
%e A136586 {336, 0, -888, 0, 325, 0, -34, 0, 1},
%e A136586 {0, 2616, 0, -2455, 0, 561, 0, -43, 0, 1},
%e A136586 {-3456, 0, 11670, 0, -5745, 0, 903, 0, -53, 0, 1}
%t A136586 P[x, 0] = 1; P[x, 1] = x; P[x, -1] = 0; P[x, -2] = -1; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; P2[x_, n_] := P2[x, n] = P[x, n] + P[x, n - 2]; Table[ExpandAll[P2[x, n]], {n, 0, 10}]; a = Join[{0}, Table[CoefficientList[P2[x, n], x], {n, 0, 10}]]; Flatten[a]
%Y A136586 Cf. A137286.
%K A136586 uned,tabl,sign
%O A136586 1,8
%A A136586 _Roger L. Bagula_, Mar 30 2008