cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136587 Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,2*n): second type.

This page as a plain text file.
%I A136587 #3 Mar 30 2012 17:34:23
%S A136587 2,-2,1,1,6,0,-8,0,1,-48,-5,87,1,-20,0,1,392,0,-984,0,346,0,-35,0,1,
%T A136587 -3840,33,12645,-14,-6090,1,938,0,-54,0,1,46032,0,-187338,0,114745,0,
%U A136587 -23813,0,2070,0,-77,0,1,-645120,-279,3133935,185,-2336040,-27,611415,1,-71280,0,3993,0,-104,0,1,10322304,0,-58438830,0
%N A136587 Triangle of coefficients of even modified recursive orthogonal Hermite polynomials given in Hochstadt's book:P(x, n) = x*P(x, n - 1) - n*P(x, n - 2) ;A137286; P2(x,n)=P(x,n)+P(x,2*n): second type.
%C A136587 Row sums are:
%C A136587 {2, 0, -1, 16, -280, 3620, -48380, 696680, -10740280, 175631200, -3000871600}
%C A136587 The double function Integration is not orthogonal:
%C A136587 Table[Integrate[Exp[ -x^2/2]*P2[x, n]*P2[x, m], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0, 10}];
%C A136587 Both types have the polynomial:
%C A136587 p[x]=6 - 8 x^2 + x^4
%C A136587 Original Hermite has:
%C A136587 p[x]=8 - 9 x^2 + x^4
%C A136587 Integration of these as:
%C A136587 f[y_] = Integrate[Exp[ -x^2/4]*p[x], {x, Infinity, y}]
%C A136587 g[z_] = Integrate[Exp[ -y^2/4]*f[y], {y, Infinity, z}]
%C A136587 gives three level or four level curves with negative limit of 2*Pi.
%F A136587 H2(x,n)=A137286(x,n)+A137286(x,2*n)
%e A136587 {2},
%e A136587 {-2, 1, 1},
%e A136587 {6, 0, -8, 0, 1},
%e A136587 {-48, -5, 87,1, -20, 0, 1},
%e A136587 {392, 0, -984, 0, 346, 0, -35, 0, 1},
%e A136587 {-3840, 33, 12645, -14, -6090, 1, 938, 0, -54, 0, 1},
%e A136587 {46032, 0, -187338, 0,114745, 0, -23813, 0, 2070, 0, -77, 0, 1},
%e A136587 {-645120, -279, 3133935, 185, -2336040, -27, 611415, 1, -71280, 0,3993, 0, -104,0, 1},
%e A136587 {10322304, 0, -58438830, 0, 51450870, 0, -16289000, 0, 2386396, 0, -178893, 0, 7007, 0, -135, 0, 1},
%e A136587 {-185794560, 2895, 1203216525, -2640, -1223803350,
%e A136587 588, 455259420, -44, -80424630, 1, 7561554, 0, -395850, 0, 11460, 0, -170,
%e A136587 0, 1},
%e A136587 {3715887360, 0, -27125479980, 0, 31335461535, 0, -13408093762, 0, 2775672846, 0,-314143829, 0, 20603310, 0, -796620, 0, 17748, 0, -209, 0, 1}
%t A136587 P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; P2[x_, n_] := P2[x, n] = P[x, n] + P[x, 2*n]; Table[ExpandAll[P2[x, n]], {n, 0, 10}]; a = Join[{0}, Table[CoefficientList[P2[x, n], x], {n, 0, 10}]]; Flatten[a]
%Y A136587 Cf. A137286.
%K A136587 uned,tabl,sign
%O A136587 1,1
%A A136587 _Roger L. Bagula_, Mar 30 2008