This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136596 #6 May 23 2013 21:41:52 %S A136596 1,-3,31,-375,5911,-113463,2571031,-67170855,1987919671,-65731585623, %T A136596 2401646633431,-96089053104135,4178215255335031,-196193483904124983, %U A136596 9894077286353278231,-533334378459657706215,30602112192036616407991 %N A136596 Column 2 of triangle A136595. %F A136596 a(n) = Sum_{i=0..n-1} (-1)^i*(2+i)!*Stirling2(n,2+i)*Catalan(2,i)/2!, where Stirling2(n,k) = A008277(n,k); Catalan(k,i) = binomial(2*i+k,i)*k/(2*i+k) = coefficient of x^i in C(x)^k with C(x) = (1-sqrt(1-4x))/(2x). %F A136596 a(n) = (1+(-1)^n*A048287(n))/2. - _Vladeta Jovovic_, Jan 27 2008 %o A136596 (PARI) {a(n)=n!* sum(i=0,n-1,(-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(2+i)),n)*binomial(2*i+2,i)/(2*i+2))} %o A136596 for(n=2,20,print1(a(n),", ")) %o A136596 (PARI) /* Define Stirling2: */ %o A136596 {Stirling2(n,k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!,n)} %o A136596 /* Define Catalan(m,n) = [x^n] C(x)^m: */ %o A136596 {Catalan(m,n)=binomial(2*n+m,n)*m/(2*n+m)} %o A136596 /* Define this sequence: */ %o A136596 {a(n)=sum(i=0,n-1,(-1)^i*(2+i)!*Stirling2(n,2+i)*Catalan(2,i)/2!)} %o A136596 for(n=2,20,print1(a(n),", ")) %Y A136596 Cf. A136595; A048287, A136597. %K A136596 sign %O A136596 2,2 %A A136596 _Paul D. Hanna_, Jan 10 2008