This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136597 #4 Jun 13 2015 09:39:50 %S A136597 1,-6,85,-1350,26341,-603246,15887845,-473148150,15723174181, %T A136597 -576826897086,23157022930405,-1009818279438150,47533643556874021, %U A136597 -2402218856253008526,129730266330534913765,-7455932648513351731350,454377365410347843373861 %N A136597 Column 3 of triangle A136595. %F A136597 a(n) = Sum_{i=0..n-1} (-1)^i*(3+i)!*Stirling2(n,3+i)*Catalan(3,i)/3!, where Stirling2(n,k) = A008277(n,k), Catalan(k,i) = C(2*i+k,i)*k/(2*i+k) = coefficient of x^i in C(x)^k with C(x) = (1-sqrt(1-4x))/(2x). %o A136597 (PARI) a(n)=n!/2!* sum(i=0,n-1,(-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(3+i)),n)*binomial(2*i+3,i)/(2*i+3)) %o A136597 (PARI) /* Define Stirling2: */ {Stirling2(n,k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!,n)} /* Define Catalan(m,n) = [x^n] C(x)^m: */ {Catalan(m,n)=binomial(2*n+m,n)*m/(2*n+m)} /* Define this sequence: */ {a(n)=sum(i=0,n-1,(-1)^i*(3+i)!*Stirling2(n,3+i)*Catalan(3,i)/3!)} %Y A136597 Cf. A136595, A048287, A136596. %K A136597 sign %O A136597 3,2 %A A136597 _Paul D. Hanna_, Jan 10 2008