cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136598 Expansion of g.f. (2*x^3 + 5) / ( -x^5 + x^3 + 1).

This page as a plain text file.
%I A136598 #15 Mar 15 2024 11:57:43
%S A136598 5,0,0,-3,0,5,3,0,-8,-3,5,11,3,-13,-14,2,24,17,-15,-38,-15,39,55,0,
%T A136598 -77,-70,39,132,70,-116,-202,-31,248,272,-85,-450,-303,333,722,218,
%U A136598 -783,-1025,115,1505,1243,-898,-2530,-1128,2403,3773,230,-4933,-4901,2173,8706,5131,-7106,-13607
%N A136598 Expansion of g.f. (2*x^3 + 5) / ( -x^5 + x^3 + 1).
%H A136598 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-1,0,1).
%F A136598 a(n) = -a(n-3) + a(n-5). a(-n) = A133394(n).
%e A136598 5 - 3*x^3 + 5*x^5 + 3*x^6 - 8*x^8 - 3*x^9 + 5*x^10 + 11*x^11 + 3*x^12 - ...
%o A136598 (PARI) {a(n) = if( n<0, n = 1 - n; polsym(x^5 - x^3 - 1, n)[n], n++; polsym(x^5 + x^2 - 1, n)[n])}
%Y A136598 Cf. A133394.
%K A136598 sign,easy
%O A136598 0,1
%A A136598 _Michael Somos_, Jan 11 2008