This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136612 #12 Nov 18 2022 18:08:38 %S A136612 3,6,4,8,4,8,8,6,12,6,8,8,8,10,8,12,6,8,10,6,12,12,10,10,8,4,8,16,8, %T A136612 20,6,16,4,16,8,10,12,10,8,16,4,14,4,16,14,16,14,8,8,6,16,8,16,12,8, %U A136612 12,6,8,14,16,14,16,8,16,10,24,8,14,8,12,12,14,10,12,12,10,16,14,10,20,4,16,6 %N A136612 a(n) = ((prime(n+3) + prime(n+1)) - (prime(n+2) + prime(n))). %C A136612 a(n) is the sum of two prime gaps, thus a(n) >= 4 for n > 1. Conjecturally a(n) << log^2 n (probably with constant around 2). - _Charles R Greathouse IV_, Aug 25 2014 %H A136612 Harvey P. Dale, <a href="/A136612/b136612.txt">Table of n, a(n) for n = 1..1000</a> %F A136612 a(n)=A001223(n)+A001223(n+2). - _R. J. Mathar_, Apr 21 2008 %e A136612 2 + 5 = 7 %e A136612 3 + 7 = 10 %e A136612 5 + 11 = 16 %e A136612 7 + 13 = 20 %e A136612 ... %e A136612 so the sequence is: 10 - 7 = 3, %e A136612 16 - 10 = 6, %e A136612 20 - 16 = 4, %e A136612 28 - 20 = 8, %e A136612 ... %p A136612 A001223 := proc(n) ithprime(n+1)-ithprime(n) ; end: A136612 := proc(n) A001223(n)+A001223(n+2) ; end: seq(A136612(n),n=1..100) ; # _R. J. Mathar_, Apr 21 2008 %t A136612 #[[4]]+#[[2]]-#[[3]]-#[[1]]&/@Partition[Prime[Range[90]],4,1] (* _Harvey P. Dale_, May 15 2013 *) %o A136612 (PARI) a(n)=my(p=prime(n),q=nextprime(p+1),r=nextprime(q+1)); nextprime(r+1)-r + q-p \\ _Charles R Greathouse IV_, Aug 25 2014 %Y A136612 Cf. A000040, A001223. %K A136612 easy,nonn %O A136612 1,1 %A A136612 _Odimar Fabeny_, Apr 14 2008 %E A136612 Corrected and extended by _R. J. Mathar_, Apr 21 2008