This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136630 #43 Jan 05 2025 19:51:38 %S A136630 1,0,1,0,0,1,0,1,0,1,0,0,4,0,1,0,1,0,10,0,1,0,0,16,0,20,0,1,0,1,0,91, %T A136630 0,35,0,1,0,0,64,0,336,0,56,0,1,0,1,0,820,0,966,0,84,0,1,0,0,256,0, %U A136630 5440,0,2352,0,120,0,1,0,1,0,7381,0,24970,0,5082,0,165,0,1,0,0,1024,0,87296,0 %N A136630 Triangular array: T(n,k) counts the partitions of the set [n] into k odd sized blocks. %C A136630 For partitions into blocks of even size see A156289. %C A136630 Essentially the unsigned matrix inverse of triangle A121408. %C A136630 From _Peter Bala_, Jul 28 2014: (Start) %C A136630 Define a polynomial sequence x_(n) by setting x_(0) = 1 and for n = 1,2,... setting x_(n) = x*(x + n - 2)*(x + n - 4)*...*(x + n - 2*(n - 1)). Then this table is the triangle of connection constants for expressing the monomial polynomials x^n in terms of the basis x_(k), that is, x^n = sum {k = 0..n} T(n,k)*x_(k) for n = 0,1,2,.... An example is given below. %C A136630 Let M denote the lower unit triangular array A119467 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array %C A136630 /I_k 0\ %C A136630 \ 0 M/ having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle, omitting the first row and column, equals the infinite matrix product M(0)*M(1)*M(2)*.... (End) %C A136630 Also the Bell transform of A000035(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 27 2016 %D A136630 L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62. %D A136630 L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 225-226. %H A136630 Ch. A. Charalambides, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/19-5/charalambides.pdf">Central factorial numbers and related expansions</a>, Fib. Quarterly, Vol. 19, No 5, Dec 1981, pp. 451-456. %H A136630 Feng Qi and Peter Taylor, <a href="https://www.researchgate.net/profile/Feng-Qi-26/publication/373421001_SERIES_EXPANSIONS_FOR_POWERS_OF_SINC_FUNCTION_AND_CLOSED-FORM_EXPRESSIONS_FOR_SPECIFIC_PARTIAL_BELL_POLYNOMIALS/">Series expansions for powers of sinc function and closed-form expressions for specific partial Bell polynomials</a>, Appl. Anal. Disc. Math. (2024) Vol. 18, No. 1, 1-24. See p. 13. %F A136630 G.f. for column k: x^k/Product_{j=0..floor(k/2)} (1 - (2*j + k-2*floor(k/2))^2 * x^2). %F A136630 G.f. for column 2*k: x^(2*k)/Product_{j=0..k} (1 - (2*j)^2*x^2). %F A136630 G.f. for column 2*k+1: x^(2*k+1)/Product_{j=0..k} (1 - (2*j+1)^2*x^2). %F A136630 From _Peter Bala_, Feb 21 2011 (Start) %F A136630 T(n,k) = 1/(2^k*k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(2*j-k)^n, %F A136630 Recurrence relation T(n+2,k) = T(n,k-2) + k^2*T(n,k). %F A136630 E.g.f.: F(x,z) = exp(x*sinh(z)) = Sum_{n>=0} R(n,x)*z^n/n! = 1 + x*z + x^2*z^2/2! + (x+x^3)*z^3/3! + .... %F A136630 The row polynomials R(n,x) begin %F A136630 R(1,x) = x %F A136630 R(2,x) = x^2 %F A136630 R(3,x) = x+x^3. %F A136630 The e.g.f. F(x,z) satisfies the partial differential equation d^2/dz^2(F) = x^2*F + x*F' + x^2*F'' where ' denotes differentiation w.r.t. x. %F A136630 Hence the row polynomials satisfy the recurrence relation R(n+2,x) = x^2*R(n,x) + x*R'(n,x) + x^2*R''(n,x) with R(0,x) = 1. %F A136630 The recurrence relation for T(n,k) given above follows from this. %F A136630 (End) %F A136630 For the corresponding triangle of ordered partitions into odd-sized blocks see A196776. Let P denote Pascal's triangle A070318 and put M = 1/2*(P-P^-1). M is A162590 (see also A131047). Then the first column of exp(t*M) lists the row polynomials for the present triangle. - _Peter Bala_, Oct 06 2011 %F A136630 Row generating polynomials equal D^n(exp(x*t)) evaluated at x = 0, where D is the operator sqrt(1+x^2)*d/dx. Cf. A196776. - _Peter Bala_, Dec 06 2011 %F A136630 From _Peter Bala_, Jul 28 2014: (Start) %F A136630 E.g.f.: exp(t*sinh(x)) = 1 + t*x + t^2*x^2/2! + (t + t^3)*x^3/3! + .... %F A136630 Hockey-stick recurrence: T(n+1,k+1) = Sum_{i = 0..floor((n-k)/2)} binomial(n,2*i)*T(n-2*i,k). %F A136630 Recurrence equation for the row polynomials R(n,t): %F A136630 R(n+1,t) = t*Sum_{k = 0..floor(n/2)} binomial(n,2*k)*R(n-2*k,t) with R(0,t) = 1. (End) %e A136630 Triangle begins: %e A136630 1; %e A136630 0, 1; %e A136630 0, 0, 1; %e A136630 0, 1, 0, 1; %e A136630 0, 0, 4, 0, 1; %e A136630 0, 1, 0, 10, 0, 1; %e A136630 0, 0, 16, 0, 20, 0, 1; %e A136630 0, 1, 0, 91, 0, 35, 0, 1; %e A136630 0, 0, 64, 0, 336, 0, 56, 0, 1; %e A136630 0, 1, 0, 820, 0, 966, 0, 84, 0, 1; %e A136630 0, 0, 256, 0, 5440, 0, 2352, 0, 120, 0, 1; %e A136630 0, 1, 0, 7381, 0, 24970, 0, 5082, 0, 165, 0, 1; %e A136630 T(5,3) = 10. The ten partitions of the set [5] into 3 odd-sized blocks are %e A136630 (1)(2)(345), (1)(3)(245), (1)(4)(235), (1)(5)(234), (2)(3)(145), %e A136630 (2)(4)(135), (2)(5)(134), (3)(4)(125), (3)(5)(124), (4)(5)(123). %e A136630 Connection constants: Row 5 = [0,1,0,10,0,1]. Hence, with the polynomial sequence x_(n) as defined in the Comments section we have x^5 = x_(1) + 10*x_(3) + x_(5) = x + 10*x*(x+1)*(x-1) + x*(x+3)*(x+1)*(x-1)*(x-3). %p A136630 A136630 := proc (n, k) option remember; if k < 0 or n < k then 0 elif k = n then 1 else procname(n-2, k-2) + k^2*procname(n-2, k) end if end proc: seq(seq(A136630(n, k), k = 1 .. n), n = 1 .. 12); # _Peter Bala_, Jul 27 2014 %p A136630 # The function BellMatrix is defined in A264428. %p A136630 BellMatrix(n -> (n+1) mod 2, 9); # _Peter Luschny_, Jan 27 2016 %t A136630 t[n_, k_] := Coefficient[ x^k/Product[ 1 - (2*j + k - 2*Quotient[k, 2])^2*x^2, {j, 0, k/2}] + x*O[x]^n, x, n]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 22 2013, after Pari *) %t A136630 BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; %t A136630 rows = 13; %t A136630 M = BellMatrix[Mod[#+1, 2]&, rows]; %t A136630 Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 23 2018, after _Peter Luschny_ *) %o A136630 (PARI) {T(n,k)=polcoeff(x^k/prod(j=0,k\2,1-(2*j+k-2*(k\2))^2*x^2 +x*O(x^n)),n)} %Y A136630 Cf. A121408; A136631 (antidiagonal sums), A003724 (row sums), A136632; A002452 (column 3), A002453 (column 5); A008958 (central factorial triangle), A156289. A185690, A196776. %K A136630 nonn,tabl %O A136630 0,13 %A A136630 _Paul D. Hanna_, Jan 14 2008