cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136645 Triangle of coefficients of a Pascal sum of recursive orthogonal Hermite polynomials given in Hochstadt's book: P(x, n) = x*P(x, n - 1) - n*P(x, n - 2); p2(x,n)=Sum[Binomial[n,m],{m,0,n}].

Table of values

n a(n)
1 1
2 1
3 1
4 -1
5 2
6 1
7 -5
8 -2
9 3
10 1
11 -3
12 -16
13 -3
14 4
15 1
16 21
17 -12
18 -35
19 -4
20 5
21 1
22 43
23 104
24 -33
25 -64
26 -5
27 6
28 1
29 -97
30 246
31 315
32 -74
33 -105
34 -6
35 7
36 1
37 -455
38 -656
39 859
40 752
41 -145
42 -160
43 -7
44 8
45 1
46 361
47 -3402
48 -2565
49 2340
50 1551
51 -258
52 -231
53 -8
54 9
55 1
56 4951
57 3196
58 -14805
59 -7608
60 5445
61 2892
62 -427
63 -320
64 -9
65 10
66 1

List of values

[1, 1, 1, -1, 2, 1, -5, -2, 3, 1, -3, -16, -3, 4, 1, 21, -12, -35, -4, 5, 1, 43, 104, -33, -64, -5, 6, 1, -97, 246, 315, -74, -105, -6, 7, 1, -455, -656, 859, 752, -145, -160, -7, 8, 1, 361, -3402, -2565, 2340, 1551, -258, -231, -8, 9, 1, 4951, 3196, -14805, -7608, 5445, 2892, -427, -320, -9, 10, 1]