cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136656 Coefficients for rewriting generalized falling factorials into ordinary falling factorials.

This page as a plain text file.
%I A136656 #29 Aug 28 2019 17:15:43
%S A136656 1,0,-2,0,6,4,0,-24,-36,-8,0,120,300,144,16,0,-720,-2640,-2040,-480,
%T A136656 -32,0,5040,25200,27720,10320,1440,64,0,-40320,-262080,-383040,
%U A136656 -199920,-43680,-4032,-128,0,362880,2963520,5503680,3764880,1142400,163968,10752,256,0,-3628800,-36288000,-82978560
%N A136656 Coefficients for rewriting generalized falling factorials into ordinary falling factorials.
%C A136656 Generalization of (signed) Lah number triangle A008297 (amended with a trivial row n=0 and a column k=0 in order to have a Sheffer triangle structure of the Jabotinsky type).
%C A136656 product(s*t-j,j=0..n-1) := fallfac(s*t,n) (falling factorial with n factors) is called generalized factorial of t of order n and scale parameter s in the Charalambides reference p. 301 ch. 8.4.
%C A136656 The s-family of triangles L(s;n,k) (in the Charalambides reference called C(n,k;-s)) is defined for integer s by fallfac(-s*t,n) = ((-1)^n)*risefac(s*t,n) = sum(L(s;n,k)*fallfac(t,k),k=0..n), n>=0. risefac(x,n):=product(x+j,j=0..n-1) for the rising factorials.
%C A136656 For positive s the signless triangles |L(s;n,k)| = L(s;n,k)*(-1)^n satisfies risefac(s*t,n) = sum(|L(s;n,k)|*fallfac(t,k),k=0..n), n>=0.
%C A136656 For negative s see the combinatorial interpretation given in the Charalambides reference, Example 8.8, p. 313: Coupon collector's problem.
%C A136656 |T(n,k)| = B_{n,k}((j+2)!; j>=0) where B_{n,k} are the partial Bell polynomials. - _Peter Luschny_, May 11 2015
%D A136656 Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, ch. 8.4 p. 301 ff. Table 8.3 (with row n=0 and column k=0 and s=-2).
%H A136656 M. Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3
%H A136656 W. Lang, <a href="/A136656/a136656.txt">First ten rows and more</a>.
%H A136656 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/Marginalia">The Bell Transform</a>
%F A136656 Recurrence: a(n,k) = 0 if n<k; a(n,0) = 1 if n=0 else 0 and a(n,k) = (-2*k-(n-1))*a(n-1,k)-2*a(n-1,k-1). From the Charalambides reference Theorem 8.19, p. 309, for s=-2.
%F A136656 E.g.f. column k: (1/(1+x)^2 - 1)^k/k!, k>=0. From the Charalambides reference Theorem 8.14, p. 305 for s=-2.(hence a Sheffer triangle of Jabotinsky type).
%F A136656 a(n,k) = sum(((-1)^(k-r))*binomial(k,r)*fallfac(-2*r,n),r=0..k)/k!, n>=k>=0. From the Charalambides reference Theorem 8.15, p. 306 for s=-2.
%F A136656 a(n,k) = sum(S1(n,r)*S2(r,k)*(-2)^r,r=k..n) with the Stirling numbers S1(n,r)= A048993(n,r) and S2(r,k)= A048993(r,k). From the Charalambides reference Theorem 8.13, p.304 for s=-2.
%F A136656 a(n,k) = sum(M_3(n,k,q)*product(fallfac(-2,j)^e(n,m,q,j),j=1..n),q=1..p(n,k)) if n>=k>=1, else 0. Here p(n,k)=A008284(n,m), the number of k parts partitions of n, the M_3 partition numbers are given in A036040 and e(n,m,q,j) is the exponent of j in the q-th k parts partition of n. Rewritten eq. (8.50), Theorem 8.16, p. 307, from the Charalambides reference for s=-2.
%F A136656 Recurrence for the unsigned case: a(n,k) = Sum_{j=0..n-k} a(n-j-1,k-1)*C(n-1,j)*(j+2)! if k<>0 else k^n. - _Peter Luschny_, Mar 31 2015
%e A136656 Triangle starts:
%e A136656 [1]
%e A136656 [0,   -2]
%e A136656 [0,    6,    4]
%e A136656 [0,  -24,  -36,   -8]
%e A136656 [0,  120,  300,  144,  16]
%e A136656 ...
%e A136656 Recurrence: a(4,2) = -7*a(3,2)-2*a(3,1) = -7*(-36) -2*(-24) = 300.
%e A136656 a(4,2)=300 as sum over the M3 numbers A036040 for the 2 parts partitions of 4: 4*fallfac(-2,1)^1*fallfac(-2,3)^1 + 3*fallfac(-2,2)^2 = 4*(-2)*(-24)+3*6^2 = 300.
%e A136656 Row n=3: [0,-24,-36,-8] for the coefficients in rewriting fallfac(-2*t,3)=((-1)^3)*risefac(2*t,3) = ((-1)^3)*(2*t)*(2*t+1)*(2*t+2) = 0*1 -24*t -36*t*(t-1) -8*t*(t-1)*(t-2).
%p A136656 # The function BellMatrix is defined in A264428.
%p A136656 BellMatrix(n -> (-1)^(n+1)*(n+2)!, 9); # _Peter Luschny_, Jan 27 2016
%t A136656 fallfac[n_, k_] := Pochhammer[n - k + 1, k]; a[n_, k_] := Sum[(-1)^(k - r)*Binomial[k, r]*fallfac[-2*r, n], {r, 0, k}]/k!; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 09 2013 *)
%t A136656 BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t A136656 rows = 10;
%t A136656 M = BellMatrix[(-1)^(# + 1)*(# + 2)!&, rows];
%t A136656 Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (*_Jean-François Alcover_, Jun 23 2018, after _Peter Luschny_ *)
%o A136656 (Sage)
%o A136656 @CachedFunction
%o A136656 def T(n, k):  # unsigned case
%o A136656     if k == 0: return 1 if n == 0 else 0
%o A136656     return sum(T(n-j-1,k-1)*(j+1)*(j+2)*gamma(n)/gamma(n-j) for j in (0..n-k))
%o A136656 for n in range(7): [T(n,k) for k in (0..n)] # _Peter Luschny_, Mar 31 2015
%Y A136656 Column sequences (unsigned) 2*A001710, 4*A136659, 8*A136660, 16*A136661 for k=1..4.
%Y A136656 Cf. A136657 without row n=0 and column k=0, divided by 2.
%K A136656 sign,easy,tabl
%O A136656 0,3
%A A136656 _Wolfdieter Lang_, Feb 22 2008, Sep 09 2008