A136662 Number of cycles of the permutations of [1,2,...,n].
1, 2, 1, 3, 2, 2, 1, 1, 2, 4, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2, 3, 1, 2, 5, 4, 4, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 2, 4, 3, 3, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2, 3, 1, 2, 3, 2, 2, 1, 1, 2, 4, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 1, 2, 2, 1
Offset: 1
Examples
Triangle begins: [1]; [2,1]; [3,2,2,1,1,2]; [4,3,3,2,2,3,3,2,2,1,1,2,2,1,3,2,2,1,1,2,2,3,1,2]; ... Row n=3: permutations of [1,2,3] in the order [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]. Cycle decomposition: [[[1], [2], [3]], [[1], [2, 3]], [[1, 2], [3]], [[1, 2, 3]], [[1, 3, 2]], [[1, 3], [2]]]. Number of cycles: [3,2,2,1,1,2], the entries of row n=3.
Links
- Alois P. Heinz, Rows n = 1..8, flattened
- FindStat - Combinatorial Statistic Finder, The number of cycles in the cycle decomposition of a permutation
- Wolfdieter Lang, First rows and cycle decompositions.
Formula
a(n,k) = number of cycles of the k-th permutation of [1,2,...,n] in standard (increasing) order.
Comments