cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136663 Triangle of coefficients of the Pascal sum of A053120 Chebyshev's T(n, x) polynomials :p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}].

This page as a plain text file.
%I A136663 #3 Mar 30 2012 17:34:23
%S A136663 1,1,1,0,2,2,-2,0,6,4,-4,-8,4,16,8,-4,-20,-20,20,40,16,0,-24,-72,-40,
%T A136663 72,96,32,8,0,-112,-224,-56,224,224,64,16,64,-32,-448,-624,0,640,512,
%U A136663 128,16,144,288,-288,-1584,-1584,384,1728,1152,256,0,160,800,960,-1600,-5088,-3680,1920,4480,2560,512
%N A136663 Triangle of coefficients of the Pascal sum of A053120 Chebyshev's T(n, x) polynomials :p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}].
%C A136663 Row sums:
%C A136663 {1, 0, -2, -6, -14, -30, -62, -126, -254, -510, -1022}
%F A136663 p(x,n)=2*x*p(x,n-1)-p(x,n-2); pp(x,n)=Sum[Binomial[n,m]*p(x,m),{m,0,n}]
%e A136663 {1},
%e A136663 {1, 1},
%e A136663 {0, 2, 2},
%e A136663 {-2, 0, 6, 4},
%e A136663 {-4, -8, 4, 16, 8},
%e A136663 {-4, -20, -20, 20, 40, 16},
%e A136663 {0, -24, -72, -40, 72, 96, 32},
%e A136663 {8, 0, -112, -224, -56, 224, 224, 64},
%e A136663 {16, 64, -32, -448, -624, 0, 640, 512, 128},
%e A136663 {16, 144, 288, -288, -1584, -1584, 384, 1728, 1152, 256},
%e A136663 {0,160, 800, 960, -1600, -5088, -3680, 1920, 4480, 2560, 512}
%t A136663 P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = 2*x*P[x, n - 1] - P[x, n - 2]; Q[x_, n_] := Q[x, n] = Sum[P[x, m]*Binomial[n, m], {m, 0, n}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a]
%Y A136663 Cf. A053120.
%K A136663 uned,tabl,sign
%O A136663 1,5
%A A136663 _Roger L. Bagula_, Apr 02 2008