cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136664 Triangular vector sequence as weighted conversion between A137286 and A049310.

This page as a plain text file.
%I A136664 #8 Jan 07 2013 11:12:45
%S A136664 1,0,2,8,0,4,0,20,0,8,128,0,48,0,16,0,352,0,112,0,32,3072,0,928,0,256,
%T A136664 0,64,0,8928,0,2368,0,576,0,128,98304,0,24960,0,5888,0,1280,0,256,0,
%U A136664 296448,0,67584,0,14336,0,2816,0,512,3932160,0,863232,0,178176,0,34304
%N A136664 Triangular vector sequence as weighted conversion between A137286 and A049310.
%C A136664 Row sums:
%C A136664 {1, 2, 12, 28, 192, 496, 4320, 12000, 130688, 381696, 5015040};
%C A136664 Suppose that you have a Chebyshev-like recursion: (one type) P[x,n]=x*P[x,n-1]-P[x,n-2]
%C A136664 and an Hermite: Q[x,n]=x*Q[x,n-1]-n*Q[x,n-2]
%C A136664 You can define a set of Matrices on the Coefficient list vectors:
%C A136664 vp[n]=M[n].vq[n]
%C A136664 vq[n].vq[n]t=delta[i,j]
%C A136664 vp[n].vq[n]t=M[n]
%C A136664 where M[n] is a diagonal matrix (a vector)
%C A136664 Then a new set of polynomials is obtained.
%F A136664 T(n,m)=If[A137286(m)>0,A049310(n)/A137286(m),0] Out_vector=2^(n-1)*T(n,m)
%e A136664 {1},
%e A136664 {0, 2},
%e A136664 {8, 0, 4},
%e A136664 {0, 20, 0, 8},
%e A136664 {128, 0, 48, 0, 16},
%e A136664 {0, 352, 0, 112, 0, 32},
%e A136664 {3072, 0, 928, 0, 256, 0, 64},
%e A136664 {0, 8928, 0, 2368, 0, 576, 0, 128},
%e A136664 {98304, 0, 24960, 0, 5888, 0, 1280, 0, 256},
%e A136664 {0, 296448, 0, 67584, 0, 14336, 0, 2816, 0, 512},
%e A136664 {3932160, 0, 863232, 0, 178176, 0, 34304, 0, 6144, 0, 1024}
%t A136664 Clear[P, x, n, a] (*Hermite : A137286*) P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; a1 = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; (* Chebyshev : other kind : A049310*) Clear[B, x, n] B[x, 0] = 1; B[x, 1] = x; B[x_, n_] := B[x, n] = x*B[x, n - 1] - B[x, n - 2]; a = Table[CoefficientList[B[x, n], x], {n, 0, 10}]; (* converter?*) b = Table[Table[If[a[[n]][[ i]] == 0, 0, 2^(n - 1)*a1[[n]][[i]]/a[[n]][[i]]], {i, 1, Length[a[[n]]]}], {n, 1, Length[a]}]; Flatten[b]
%Y A136664 Cf. A137286, A049310.
%K A136664 nonn,uned,tabl
%O A136664 1,3
%A A136664 _Roger L. Bagula_, Apr 01 2008