This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136668 #23 Apr 19 2019 11:09:27 %S A136668 1,0,1,-2,0,2,0,-11,0,8,8,0,-74,0,48,0,119,0,-632,0,384,-48,0,1634,0, %T A136668 -6608,0,3840,0,-1409,0,24032,0,-81984,0,46080,384,0,-32798,0,389312, %U A136668 0,-1178496,0,645120,0,18825,0,-741056,0,6966848,0,-19270656,0,10321920 %N A136668 Triangle read by rows: coefficients of a Bessel polynomial recursion: P(x, n) = 2*(n-1)*P(x, n - 1)/x - n*P(x, n - 2) with substitution x -> 1/y. %C A136668 Row sums: {1, 1, 0, -3, -18, -129, -1182, -13281, -176478, -2704119, -46909362, ...}. %D A136668 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1972, 10th edition, (and various reprintings), p. 631. %H A136668 G. C. Greubel, <a href="/A136668/b136668.txt">Table of n, a(n) for the first 25 rows, flattened</a> %F A136668 P(x,0) = 1; P(x,1) = 1/x; P(x, n) = 2*(n-1)*P(x, n - 1)/x - n*P(x, n - 2); with substitution of x to 1/y. %e A136668 Triangle begins as: %e A136668 1; %e A136668 0, 1; %e A136668 -2, 0, 2; %e A136668 0, -11, 0, 8; %e A136668 8, 0, -74, 0, 48; %e A136668 0, 119, 0, -632, 0, 384; %e A136668 -48, 0, 1634, 0, -6608, 0, 3840; %e A136668 0, -1409, 0, 24032, 0, -81984, 0, 46080; %e A136668 .... %t A136668 P[x, 0]= 1; P[x, 1]= 1/x; %t A136668 P[x_, n_]:= P[x, n] = 2*(n-1)*P[x, n-1]/x - n*P[x, n-2]; %t A136668 Table[ExpandAll[P[x, n] /. x -> 1/y], {n, 0, 10}]; %t A136668 Table[CoefficientList[P[x, n] /. x -> 1/y, y], {n, 0, 10}]//Flatten %Y A136668 Cf. A106174, A123956. %K A136668 tabl,sign %O A136668 1,4 %A A136668 _Roger L. Bagula_, Apr 03 2008