This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136674 #11 Mar 12 2020 18:59:15 %S A136674 1,2,-1,1,-4,1,0,-8,6,-1,-1,-12,19,-8,1,-2,-15,44,-34,10,-1,-3,-16,84, %T A136674 -104,53,-12,1,-4,-14,140,-258,200,-76,14,-1,-5,-8,210,-552,605,-340, %U A136674 103,-16,1,-6,3,288,-1056,1562,-1209,532,-134,18,-1,-7,20,363,-1848,3575,-3640,2170,-784,169,-20,1 %N A136674 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial p(n,x) with p(0,x) = 1, p(1,x) = 2 - x, p(2,x) = 1 - 4*x + x^2 and p(n,x) = (2-x)*p(n-1,x) - p(n-2,x) if n>2. %C A136674 Row sums: A117373(n-1). %H A136674 G. C. Greubel, <a href="/A136674/b136674.txt">Rows n = 0..100 of triangle, flattened</a> %F A136674 T(n,k) = 2*T(n-1,k) - T(n-2,k) - T(n-1,k-1). - _R. J. Mathar_, Jan 12 2011 %e A136674 Triangle begins as: %e A136674 1; %e A136674 2, -1; %e A136674 1, -4, 1; %e A136674 0, -8, 6, -1; %e A136674 -1, -12, 19, -8, 1; %e A136674 -2, -15, 44, -34, 10, -1; %e A136674 -3, -16, 84, -104, 53, -12, 1; %e A136674 -4, -14, 140, -258, 200, -76, 14, -1; %e A136674 -5, -8, 210, -552, 605, -340, 103, -16, 1; %e A136674 -6, 3, 288, -1056, 1562, -1209, 532, -134, 18, -1; %e A136674 -7, 20, 363, -1848, 3575, -3640, 2170, -784, 169, -20, 1; %p A136674 A136674aux := proc(n) option remember; if n = 0 then 1; elif n= 1 then 2-x ; elif n= 2 then 1-4*x+x^2 ; else (2-x)*procname(n-1)-procname(n-2) ; end if; end proc: %p A136674 A136674 := proc(n,k) coeftayl(A136674aux(n),x=0,k) ; end proc: # _R. J. Mathar_, Jan 12 2011 %t A136674 (* tridiagonal matrix code*) %t A136674 T[n_, m_, d_]:= If[n==m, 2, If[n==d && m==d-1, -3, If[(n==m-1 || n==m+1), -1, 0]]]; %t A136674 M[d_]:= Table[T[n, m, d], {n,d}, {m,d}]; %t A136674 Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]//Flatten %t A136674 (* polynomial recursion: three initial terms necessary*) %t A136674 p[x, 0]:= 1; p[x, 1]:= (2-x); p[x, 2]:= 1 -4*x +x^2; %t A136674 p[x_, n_]:= p[x, n]= (2-x)*p[x, n-1] - p[x, n-2]; %t A136674 Table[ExpandAll[p[x, n]], {n, 0, Length[g] -1}] %t A136674 (* Third program *) %t A136674 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, (-1)^n, If[k==0, 3-n, 2*T[n-1, k] -T[n-2, k] -T[n-1, k-1] ]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Mar 12 2020 *) %o A136674 (Sage) %o A136674 @CachedFunction %o A136674 def T(n, k): %o A136674 if (k<0 or k>n): return 0 %o A136674 elif (k==n): return (-1)^n %o A136674 elif (k==0): return 3-n %o A136674 else: return 2*T(n-1,k) - T(n-2,k) - T(n-1,k-1) %o A136674 [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Mar 12 2020 %K A136674 easy,tabl,sign %O A136674 0,2 %A A136674 _Roger L. Bagula_, Apr 05 2008