This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136680 #8 Dec 02 2022 07:05:33 %S A136680 1,1,1,1,1,4,1,1,4,20,1,1,4,20,520,1,1,4,20,520,26440,1,1,4,20,520, %T A136680 26440,8766080,1,1,4,20,520,26440,8766080,6939853440,1,1,4,20,520, %U A136680 26440,8766080,6939853440,41934828744960,1,1,4,20,520,26440,8766080,6939853440,41934828744960,694027278828744960 %N A136680 Triangle T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1, read by rows. %H A136680 G. C. Greubel, <a href="/A136680/b136680.txt">Rows n = 1..30 of the triangle, flattened</a> %F A136680 T(k) = T(k-1) + n^(k-2)*T(k-2), with T(0) = 0, T(1) = 1. %F A136680 T(n, k) = f(k) for k < n+1, otherwise 0, where f(k) = f(k-1) + k^(k-2)*f(k-2) with f(0) = 0 and f(1) = 1. - _G. C. Greubel_, Dec 01 2022 %e A136680 Triangle begins as: %e A136680 1; %e A136680 1, 1; %e A136680 1, 1, 4; %e A136680 1, 1, 4, 20; %e A136680 1, 1, 4, 20, 520; %e A136680 1, 1, 4, 20, 520, 26440; %e A136680 1, 1, 4, 20, 520, 26440, 8766080; %e A136680 1, 1, 4, 20, 520, 26440, 8766080, 6939853440; %e A136680 1, 1, 4, 20, 520, 26440, 8766080, 6939853440, 41934828744960; %t A136680 T[k_]:= T[k]= If[k<2, k, T[k-1] + n^(k-2)*T[k-2]]; %t A136680 Table[T[k], {n,10}, {k,n}]//Flatten %o A136680 (Magma) %o A136680 function f(k) %o A136680 if k lt 2 then return k; %o A136680 else return f(k-1) + k^(k-2)*f(k-2); %o A136680 end if; return f; %o A136680 end function; %o A136680 A136680:= func< n,k | k le n select f(k) else 0 >; %o A136680 [A136680(n,k): k in [1..n], n in [1..14]]; // _G. C. Greubel_, Dec 01 2022 %o A136680 (SageMath) %o A136680 @CachedFunction %o A136680 def f(k): %o A136680 if (k<2): return k %o A136680 else: return f(k-1) + k^(k-2)*f(k-2) %o A136680 def A136680(n,k): return f(k) if (k < n+1) else 0 %o A136680 flatten([[A136680(n,k) for k in range(1,n+1)] for n in range(1,15)]) # _G. C. Greubel_, Dec 01 2022 %Y A136680 q-Fibonacci numbers include: A015459, A015460, A015461, A015462, A015463, A015464, A015465, A015467, A015468, A015469, A015470, A015473, A015474, A015475, A015476, A015477, A015479, A015480, A015481, A015482, A015484, A015485. %K A136680 nonn,tabl %O A136680 1,6 %A A136680 _Roger L. Bagula_, Apr 06 2008 %E A136680 Edited by _G. C. Greubel_, Dec 01 2022