cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136705 Triangle read by rows where the n-th row gives the coefficients of the characteristic polynomial for a Fibonacci-type matrix with a=1 and b=1.

This page as a plain text file.
%I A136705 #16 Jan 05 2025 19:51:38
%S A136705 1,1,-1,-1,-1,1,1,0,1,-1,-1,0,0,-1,1,1,0,0,0,1,-1,-1,0,0,0,0,-1,1,1,0,
%T A136705 0,0,0,0,1,-1,-1,0,0,0,0,0,0,-1,1,1,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0,0,
%U A136705 0,0,-1,1,1,0,0,0,0,0,0,0
%N A136705 Triangle read by rows where the n-th row gives the coefficients of the characteristic polynomial for a Fibonacci-type matrix with a=1 and b=1.
%C A136705 Row sums are 1, 0, -1, 1, -1, 1, -1, 1, -1, 1, ... .
%H A136705 J. Cigler, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/41-1/cigler.pdf">q-Fibonacci polynomials</a>, Fibonacci Quarterly 41 (2003) 31-40.
%F A136705 The n-th row contains the coefficients (from lowest-order to highest-order) of the characteristic polynomial of the matrix with (i,j)-entry given by: if(i = j = n, 1, if(j = n and i = 1, 1, if(i = j + 1, 1, 0))).
%F A136705 For n >= 2, the n-th row of the triangle consists of (-1)^(n+1), followed by n-2 zeros, followed by (-1)^(n+1) and (-1)^n. - _Nathaniel Johnston_, Apr 27 2011
%e A136705 Triangle begins:
%e A136705 1,
%e A136705 1, -1,
%e A136705 -1, -1, 1,
%e A136705 1, 0, 1, -1,
%e A136705 -1, 0, 0, -1, 1,
%e A136705 1, 0, 0, 0, 1, -1,
%e A136705 -1, 0, 0, 0, 0, -1, 1,
%e A136705 1, 0, 0, 0, 0, 0, 1, -1,
%e A136705 -1, 0, 0, 0, 0, 0, 0, -1, 1,
%e A136705 1, 0, 0, 0, 0, 0, 0, 0, 1, -1,
%e A136705 -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1,
%e A136705 ...
%e A136705 For n = 4, the matrix is {{0, 0, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 1}}.
%t A136705 T[n_, m_, d_] := If[ n == m == d, 1, If[m == d && n == 1, 1, If[n == m + 1, 1, 0]]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; Table[Det[M[d]], {d, 1, 10}]; Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}]; a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]],x], {d, 1, 10}]]; Flatten[a]
%Y A136705 The triangle when reversed is very similar to A141679. - _N. J. A. Sloane_, Dec 14 2014
%K A136705 tabl,easy,sign
%O A136705 0,1
%A A136705 _Roger L. Bagula_, Apr 06 2008