This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136722 #10 Jul 04 2024 01:46:10 %S A136722 1,1,2,8,48,336,3584,54592,1422976,66836480,5998884352,1030861378560, %T A136722 335994532814848,206175878632321024,237596569295651315712, %U A136722 514414692643000188272640,2096154545790162572944244736,16113456361117058761983824232448,234269143891823701379016369973493760 %N A136722 Number of preferential arrangements (or hierarchical orderings) on the connected graphs on n unlabeled nodes. %F A136722 a(n)=A001349(n)*A011782(n). %e A136722 There are A001349(3)=2 connected graphs for n=3 unlabeled elements: %e A136722 The chain %e A136722 o-o-o %e A136722 and the triangle %e A136722 . o %e A136722 /..\ %e A136722 o - o. %e A136722 There are a(3)=8 hierarchical orders on these two graphs. %e A136722 The chain gives us 6 orderings: %e A136722 o-o-o %e A136722 o %e A136722 | %e A136722 o-o %e A136722 . o %e A136722 /..\ %e A136722 o . o %e A136722 o . o %e A136722 .\./ %e A136722 . o %e A136722 o-o %e A136722 | %e A136722 o %e A136722 o %e A136722 | %e A136722 o %e A136722 | %e A136722 o %e A136722 The triangle gives us two orderings: %e A136722 . o %e A136722 /..\ %e A136722 o - o %e A136722 o - o %e A136722 \../ %e A136722 . o %o A136722 (Python) %o A136722 from functools import lru_cache %o A136722 from itertools import combinations %o A136722 from fractions import Fraction %o A136722 from math import prod, gcd, factorial %o A136722 from sympy import mobius, divisors %o A136722 from sympy.utilities.iterables import partitions %o A136722 def A136722(n): %o A136722 if n == 0: return 1 %o A136722 @lru_cache(maxsize=None) %o A136722 def b(n): return int(sum(Fraction(1<<sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q>>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) %o A136722 @lru_cache(maxsize=None) %o A136722 def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) %o A136722 return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n<<n-1 # _Chai Wah Wu_, Jul 03 2024 %Y A136722 Cf. A001349, A011782, A136723, A034691, A075729. %K A136722 easy,nonn %O A136722 0,3 %A A136722 _Thomas Wieder_, Jan 19 2008 %E A136722 More terms from _Alois P. Heinz_, Apr 21 2012