cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136750 G.f.: A(x) = x/(1-x) o x/(1-x^2) o x/(1-x^3) o x/(1-x^4) o..., composition of functions x/(1-x^n) for n = ...,3,2,1.

This page as a plain text file.
%I A136750 #4 Nov 18 2016 07:05:05
%S A136750 1,1,2,4,8,17,35,74,155,329,692,1464,3098,6553,13873,29361,62165,
%T A136750 131638,278787,590357,1250337,2648108,5608735,11879607,25161906,
%U A136750 53295451,112886028,239108343,506466366,1072776347,2272316123,4813150684
%N A136750 G.f.: A(x) = x/(1-x) o x/(1-x^2) o x/(1-x^3) o x/(1-x^4) o..., composition of functions x/(1-x^n) for n = ...,3,2,1.
%C A136750 The composition transpose of A136751.
%e A136750 G.f.: A(x) is the limit of composition of functions x/(1-x^n):
%e A136750 F_1(x) = x/(1-x)
%e A136750 F_2(x) = F_1(x/(1-x^2)) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8*x^6 + 13x^7 +...
%e A136750 F_3(x) = F_2(x/(1-x^3)) = x + x^2 + 2x^3 + 4x^4 + 7x^5 + 14x^6 + 26x^7 +...
%e A136750 F_4(x) = F_3(x/(1-x^4)) = x + x^2 + 2x^3 + 4x^4 + 8x^5 + 16x^6 + 32x^7 +...
%e A136750 F_5(x) = F_4(x/(1-x^5)) = x + x^2 + 2x^3 + 4x^4 + 8x^5 + 17x^6 + 34x^7 +...
%e A136750 F_6(x) = x/(1-x) o x/(1-x^2) o x/(1-x^3) o x/(1-x^4) o x/(1-x^5) o x/(1-x^6) =
%e A136750 x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 35*x^7 + 73*x^8 + 152*x^9 +...
%o A136750 (PARI) {a(n)=local(A=x+x*O(x^n));if(n<=0,0,for(i=1,n,A=A/(1-A^(n-i+1)));polcoeff(A,n))}
%o A136750 for(n=1,30,print1(a(n),", "))
%Y A136750 Cf. A136751; variants: A136752, A136753, A119470, A119471.
%K A136750 nonn
%O A136750 0,3
%A A136750 _Paul D. Hanna_, Jan 21 2008