This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A136775 #30 Sep 08 2022 08:45:32 %S A136775 1,3,11,40,145,525,1900,6875,24875,90000,325625,1178125,4262500, %T A136775 15421875,55796875,201875000,730390625,2642578125,9560937500, %U A136775 34591796875,125154296875,452812500000,1638291015625,5927392578125,21445507812500,77590576171875 %N A136775 Number of multiplex juggling sequences of length n, base state <1,1> and hand capacity 2. %C A136775 Except for the initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - 3 S + S^2; see A291000. - _Clark Kimberling_, Aug 24 2017 %H A136775 Vincenzo Librandi, <a href="/A136775/b136775.txt">Table of n, a(n) for n = 1..1000</a> %H A136775 Carolina Benedetti, Christopher R. H. Hanusa, Pamela E. Harris, Alejandro H. Morales, Anthony Simpson, <a href="https://arxiv.org/abs/2001.03219">Kostant's partition function and magic multiplex juggling sequences</a>, arXiv:2001.03219 [math.CO], 2020. See Table 1 p. 12. %H A136775 S. Butler and R. Graham, <a href="http://arXiv.org/abs/0801.2597">Enumerating (multiplex) juggling sequences</a>, arXiv:0801.2597 [math.CO], 2008. %H A136775 P. E. Harris, E. Insko, L. K. Williams, <a href="http://arxiv.org/abs/1401.0055">The adjoint representation of a Lie algebra and the support of Kostant's weight multiplicity formula</a>, arXiv preprint arXiv:1401.0055, 2014 %H A136775 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-5). %F A136775 G.f.: (x-2x^2+x^3)/(1-5x+5x^2). %F A136775 a(n) = 5*a(n-1)-5*a(n-2) for n>3. - _Colin Barker_, Aug 31 2016 %t A136775 CoefficientList[Series[(x^2-2x+1)/(5x^2-5x+1),{x,0,30}],x] (* _Harvey P. Dale_, Jun 22 2014 *) %o A136775 (PARI) Vec((x-2*x^2+x^3)/(1-5*x+5*x^2) + O(x^30)) \\ _Colin Barker_, Aug 31 2016 %o A136775 (Magma) R<x>:=PowerSeriesRing(Integers(), 27); Coefficients(R!( (x-2*x^2+x^3)/(1-5*x+5*x^2))); // _Marius A. Burtea_, Jan 13 2020 %Y A136775 Cf. A136776. %K A136775 nonn,easy %O A136775 1,2 %A A136775 _Steve Butler_, Jan 21 2008