cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136801 Largest prime factor of the composites in the n-th prime gap larger than 2.

This page as a plain text file.
%I A136801 #6 Sep 21 2015 01:23:44
%S A136801 5,7,11,13,17,19,23,17,29,31,23,37,41,43,47,11,53,37,61,43,67,73,31,
%T A136801 79,83,43,89,61,97,103,109,113,29,79,83,127,131,89,137,139,97,151,103,
%U A136801 157,163,167,173,13,179,181,53,47,191,193,197,199,101,139,211,109,17,223
%N A136801 Largest prime factor of the composites in the n-th prime gap larger than 2.
%C A136801 The largest prime factor of numbers in the interval [A136798(n),A136799(n)].
%C A136801 The sequence is obtained from A052248 by removing terms from composites in prime gaps of size 2.
%e A136801 a(1)=5 because the composites in the run from 8, 9, 10 contain prime factors 2, 3, and 5, with 5 being the largest at N=10.
%p A136801 A006530 := proc(n) max( op(numtheory[factorset](n))) ; end:
%p A136801 A136798 := proc(n) local a; if n = 1 then 8; else a := nextprime( procname(n-1))+1 ; while nextprime(a)-a <=2 do a := nextprime(a)+1 ; od; RETURN(a) ; fi; end:
%p A136801 A136801 := proc(n) local a,i; i := A136798(n) ; a := A006530( i) ; while not isprime(i+1) do i := i+1 ; a := max(a, A006530(i)) ; od: a ; end:
%p A136801 seq(A136801(n),n=1..20) ; # _R. J. Mathar_, May 27 2009
%Y A136801 Cf. A136798, A136799, A136800, A136802.
%K A136801 easy,nonn
%O A136801 1,1
%A A136801 _Enoch Haga_, Jan 24 2008
%E A136801 Edited by _R. J. Mathar_, May 27 2009