cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136802 The composite with the largest prime factor in the n-th prime gap larger than 2.

This page as a plain text file.
%I A136802 #6 Sep 21 2015 01:22:36
%S A136802 10,14,22,26,34,38,46,51,58,62,69,74,82,86,94,99,106,111,122,129,134,
%T A136802 146,155,158,166,172,178,183,194,206,218,226,232,237,249,254,262,267,
%U A136802 274,278,291,302,309,314,326,334,346,351,358,362,371,376,382,386,394
%N A136802 The composite with the largest prime factor in the n-th prime gap larger than 2.
%C A136802 Pick the number in the interval [A136798(n),A136799(n)] with the largest prime factor.
%C A136802 The sequence is obtained from A114331 by removing terms in prime gaps of size 2.
%F A136802 A006530(a(n)) = A136801(n).
%e A136802 a(1)=10 because at N=10 the largest prime factor is 5.
%p A136802 A006530 := proc(n) max( op(numtheory[factorset](n))) ; end:
%p A136802 A136798 := proc(n) local a; if n = 1 then 8; else a := nextprime( procname(n-1))+1 ; while nextprime(a)-a <=2 do a := nextprime(a)+1 ; od; RETURN(a) ; fi; end:
%p A136802 A136802 := proc(n) local c,lpf,a; c := A136798(n) ; lpf := A006530(c) ; a := c; while not isprime(c+1) do c := c+1 ; if A006530(c) > lpf then a := c ; lpf := A006530(c) ; fi; od: a ; end:
%p A136802 seq(A136802(n),n=1..80) ; # _R. J. Mathar_, May 27 2009
%Y A136802 Cf. A136798, A136799, A136800, A136801.
%K A136802 easy,nonn
%O A136802 1,1
%A A136802 _Enoch Haga_, Jan 24 2008
%E A136802 Edited by _R. J. Mathar_, May 27 2009