A136975 Numbers k such that k and k^2 use only the digits 1, 2, 3, 5 and 7.
1, 5, 11, 15, 35, 111, 115, 235, 335, 715, 1235, 2715, 3335, 3511, 3515, 3711, 12335, 27115, 33335, 33515, 35711, 37115, 72335, 75711, 111235, 123335, 132335, 177515, 333335, 333515, 357115, 572115, 575515, 577515, 723335, 757115, 1233335, 1312335, 1323335, 3333335, 3333515, 3512511, 5227115, 5772115, 7233335, 11212115, 11277115, 11735515
Offset: 1
Examples
757313127132715^2 = 573523172527531752317223271225.
Links
- Jonathan Wellons, Table of n, a(n) for n = 1..330
- J. Wellons, Tables of Shared Digits [archived]
Programs
-
Maple
f2:= proc(n) local L; convert(convert(n^2,base,10),set) intersect {4,6,8,9,0} = {} end proc: S:= {0}: A:= {}: for d from 1 to 8 do S:={seq(seq(10*s+j,j=[1,2,3,5,7]),s=S)}; A:= select(f2,S) union A; od: sort(convert(A,list)); # Robert Israel, Nov 24 2015, corrected Sep 03 2020
-
Mathematica
w = {1, 2, 3, 5, 7}; Select[Range[1, 10^7, 2], Union[IntegerDigits@ #, IntegerDigits[#^2], w] == w &] (* Michael De Vlieger, Nov 25 2015 *)
Comments