cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136975 Numbers k such that k and k^2 use only the digits 1, 2, 3, 5 and 7.

Original entry on oeis.org

1, 5, 11, 15, 35, 111, 115, 235, 335, 715, 1235, 2715, 3335, 3511, 3515, 3711, 12335, 27115, 33335, 33515, 35711, 37115, 72335, 75711, 111235, 123335, 132335, 177515, 333335, 333515, 357115, 572115, 575515, 577515, 723335, 757115, 1233335, 1312335, 1323335, 3333335, 3333515, 3512511, 5227115, 5772115, 7233335, 11212115, 11277115, 11735515
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Sequence is infinite; e.g., it contains 3...35 = (10^n-1)/3 + 2 for all n. - Robert Israel, Nov 24 2015
a(n) mod 100 can be only 11, 15 or 35 for n > 2. So if a(n) is a prime number, a(n) mod 100 = 11 for n > 2. Initial prime values of a(n) are 11, 3511 and 12375511 for n > 2. - Altug Alkan, Nov 25 2015

Examples

			757313127132715^2 = 573523172527531752317223271225.
		

Crossrefs

Programs

  • Maple
    f2:= proc(n) local L; convert(convert(n^2,base,10),set) intersect {4,6,8,9,0} = {} end proc:
    S:= {0}: A:= {}:
    for d from 1 to 8 do
      S:={seq(seq(10*s+j,j=[1,2,3,5,7]),s=S)};
      A:= select(f2,S) union A;
    od:
    sort(convert(A,list)); # Robert Israel, Nov 24 2015, corrected Sep 03 2020
  • Mathematica
    w = {1, 2, 3, 5, 7}; Select[Range[1, 10^7, 2], Union[IntegerDigits@ #, IntegerDigits[#^2], w] == w &] (* Michael De Vlieger, Nov 25 2015 *)