This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137105 #9 Apr 12 2024 09:51:27 %S A137105 2,264,964,494262,494462,4946662,4996962,49944662,499466662, %T A137105 49994666662,49999296962,499999296962,4999946666662,499999466666662, %U A137105 49999994666666662,4999999946666666662,499999999466666666662,49999999994666666666662,4999999999946666666666662,499999999999466666666666662 %N A137105 Numbers k such that k and k^2 use only the digits 2, 4, 6 and 9. %C A137105 Generated with DrScheme. %C A137105 Includes 5*10^(2*k) - (16*10^k + 14)/3 for k >= 3. The only terms < 10^28 not of that form are 2, 264, 964, 494262, 494462, 4996962, 49944662, 49999296962, and 499999296962. - _Robert Israel_, Nov 24 2023 %H A137105 J. Wellons, <a href="https://web.archive.org/web/20090206165028/http://jonathanwellons.com/shared-digits/">Tables of Shared Digits</a> [archived] %e A137105 499999296962^2 = 249999296962494262429444. %p A137105 Good := {2, 4, 6, 9}: R:= 2: %p A137105 G[1]:= {2, 4, 6}: %p A137105 for d from 2 to 28 do %p A137105 G[d]:= select(t -> member(floor((t^2 mod 10^d)/10^(d-1)), Good), map(t -> seq(10^(d-1)*i+t, i=Good), G[d-1])); %p A137105 for t in G[d] do %p A137105 if convert(convert(t^2, base, 10), set) subset Good then R:= R, t fi %p A137105 od od: %p A137105 sort([R]); # _Robert Israel_, Nov 24 2023 %K A137105 base,nonn %O A137105 1,1 %A A137105 Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008 %E A137105 More terms from _Robert Israel_, Nov 24 2023