A137152 Triangle read by rows: prime powers whose row products give A051451.
1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 1, 1, 3, 4, 5, 1, 1, 3, 4, 5, 7, 1, 1, 3, 1, 5, 7, 8, 1, 1, 1, 1, 5, 7, 8, 9, 1, 1, 1, 1, 5, 7, 8, 9, 11, 1, 1, 1, 1, 5, 7, 8, 9, 11, 13, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 17, 1, 1, 1, 1, 5, 7, 1, 9, 11, 13, 16, 17, 19, 1, 1, 1, 1, 5, 7, 1
Offset: 1
Examples
The least common multiple of the first few rows are: lcm{1} = 1 lcm{1,2} = 2 lcm{1,2,3} = 6 lcm{1,1,3,4} = 12 lcm{1,1,3,4,5} = 60 lcm{1,1,3,4,5,7} = 420 lcm{1,1,3,1,5,7,8} = 840 lcm{1,1,1,1,5,7,8,9} = 2520 lcm{1,1,1,1,5,7,8,9,11} = 27720 Multiplying the terms in the rows produces the same result: 1 = 1 1*2 = 2 1*2*3 = 6 1*1*3*4 = 12 1*1*3*4*5 = 60 1*1*3*4*5*7 = 420 1*1*3*1*5*7*8 = 840 1*1*1*1*5*7*8*9 = 2520 1*1*1*1*5*7*8*9*11 = 27720
Crossrefs
Cf. A051451.
Comments