This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137153 #20 Jun 09 2025 01:09:06 %S A137153 1,1,1,1,2,1,1,3,4,1,1,4,10,8,1,1,5,20,36,16,1,1,6,35,120,136,32,1,1, %T A137153 7,56,330,816,528,64,1,1,8,84,792,3876,5984,2080,128,1,1,9,120,1716, %U A137153 15504,52360,45760,8256,256,1,1,10,165,3432,54264,376992,766480,357760,32896 %N A137153 Triangle, read by rows, where T(n,k) = C(2^k + n-k-1, n-k). %C A137153 Matrix inverse is A137156. %C A137153 T(n,k) is the number of relations between a set of k distinguishable elements and a set of n-k indistinguishable elements. - _Isaac R. Browne_, Jun 04 2025 %H A137153 Paul D. Hanna, <a href="/A137153/b137153.txt">Table of n, a(n) for n = 0..1080; rows 0..45 of flattened triangle.</a> %e A137153 Triangle begins: %e A137153 1; %e A137153 1, 1; %e A137153 1, 2, 1; %e A137153 1, 3, 4, 1; %e A137153 1, 4, 10, 8, 1; %e A137153 1, 5, 20, 36, 16, 1; %e A137153 1, 6, 35, 120, 136, 32, 1; %e A137153 1, 7, 56, 330, 816, 528, 64, 1; %e A137153 1, 8, 84, 792, 3876, 5984, 2080, 128, 1; %e A137153 1, 9, 120, 1716, 15504, 52360, 45760, 8256, 256, 1; %e A137153 1, 10, 165, 3432, 54264, 376992, 766480, 357760, 32896, 512, 1; %e A137153 ... %t A137153 Table[Binomial[2^k+n-k-1,n-k],{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Mar 06 2017 *) %o A137153 (PARI) {T(n,k)=binomial(2^k+n-k-1,n-k)} %o A137153 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print("")) %o A137153 (PARI) {T(n, k) = polcoeff(1/(1-x+x*O(x^n))^(2^k), n-k)} %o A137153 for(n=0,10,for(k=0,n,print1(T(n,k),", "));print("")) %Y A137153 Cf. A137154 (row sums), A137155 (antidiagonal sums), A060690 (central terms); A137156 (matrix inverse). %Y A137153 Cf. A092056 (same with reflected rows). %K A137153 nonn,tabl %O A137153 0,5 %A A137153 _Paul D. Hanna_, Jan 24 2008