This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137156 #11 May 17 2025 03:11:40 %S A137156 1,-1,1,1,-2,1,-2,5,-4,1,9,-24,22,-8,1,-88,239,-228,92,-16,1,1802, %T A137156 -4920,4749,-1976,376,-32,1,-75598,206727,-200240,84086,-16432,1520, %U A137156 -64,1,6421599,-17568408,17034964,-7173240,1413084,-133984,6112,-128,1 %N A137156 Matrix inverse of triangle A137153(n,k) = C(2^k+n-k-1, n-k), read by rows. %C A137156 Unsigned column 0 = A001192, number of full sets of size n. %F A137156 G.f. of column k: 1 = Sum_{n>=0} T(n+k,k)*x^n/(1-x)^(2^(n+k)). %e A137156 Triangle begins: %e A137156 1; %e A137156 -1, 1; %e A137156 1, -2, 1; %e A137156 -2, 5, -4, 1; %e A137156 9, -24, 22, -8, 1; %e A137156 -88, 239, -228, 92, -16, 1; %e A137156 1802, -4920, 4749, -1976, 376, -32, 1; %e A137156 -75598, 206727, -200240, 84086, -16432, 1520, -64, 1; %e A137156 6421599, -17568408, 17034964, -7173240, 1413084, -133984, 6112, -128, 1; %e A137156 ... %o A137156 (PARI) /* As matrix inverse of A137153: */ %o A137156 {T(n,k) = local(M=matrix(n+1,n+1,r,c,if(r>=c,binomial(2^(c-1)+r-c-1,r-c)))); if(n<k||k<0,0,(M^-1)[n+1,k+1])} %o A137156 for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) %o A137156 (PARI) /* Using the g.f.: */ %o A137156 {T(n,k) = if(n<k||k<0,0,if(n==k,1,polcoeff(1-sum(j=0, n-k-1, T(j+k,k)*x^j/(1-x+x*O(x^(n-k)))^(2^(j+k))),n-k)))} %o A137156 for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) %Y A137156 Cf. A137153 (matrix inverse); unsigned columns: A001192, A137157, A137158, A137159; unsigned row sums: A137160. %K A137156 sign,tabl %O A137156 0,5 %A A137156 _Paul D. Hanna_, Jan 24 2008