This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137216 #5 Jan 06 2022 15:41:54 %S A137216 1,1,1,2,2,3,6,9,22,41,24,64,266,708,1486,120,625,4536,17457,48088, %T A137216 108129,720,7776,100392,563088,2043864,5709120,13399176,5040,117649, %U A137216 2739472,22516209,107972560,375217945,1053757584,2544404617,40320,2097152,89020752,1076444064,6831882992,29566405440,99420254352,279663595232,688833593904 %N A137216 Erlang C queues type triangular sequence based on A122525. %H A137216 G. C. Greubel, <a href="/A137216/b137216.txt">Rows n = 0..50 of the triangle, flattened</a> %F A137216 T(n, k) = (1/n)*( n^n * k^(n+1) - n! * (k - 1) * Sum_{j=0..n} (n*k)^j/j! ), with T(n, 0) = n! and T(n, 1) = n^(n-1). %e A137216 Triangle begins as: %e A137216 1; %e A137216 1, 1; %e A137216 2, 2, 3; %e A137216 6, 9, 22, 41; %e A137216 24, 64, 266, 708, 1486; %e A137216 120, 625, 4536, 17457, 48088, 108129; %e A137216 720, 7776, 100392, 563088, 2043864, 5709120, 13399176; %t A137216 T[n_, k_]:= If[k==0, n!, If[k==1, n^(n-1), (1/n)*(k^(n+1)*n^n - n!*(k-1)*Sum[n^j*k^j/j!, {j,0,n}])]]; %t A137216 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 06 2022 *) %o A137216 (Sage) %o A137216 @CachedFunction %o A137216 def A137216(n, k): %o A137216 if (k==0): return factorial(n) %o A137216 elif (k==1): return n^(n-1) %o A137216 else: return (1/n)*(k^(n+1)*n^n - factorial(n)*(k-1)*sum((n*k)^j/factorial(j) for j in (0..n))) %o A137216 flatten([[A137216(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jan 06 2022 %Y A137216 Cf. A122525, A137227. %K A137216 nonn,tabl %O A137216 0,4 %A A137216 _Roger L. Bagula_, Mar 06 2008 %E A137216 Edited by _G. C. Greubel_, Jan 06 2022