A137225 Triangle T(k,q) of minimal q-Niven numbers: smallest number such that the sum of its digits in base q equals k, 2<=q<=k+1.
1, 3, 2, 7, 5, 3, 15, 8, 7, 4, 31, 17, 11, 9, 5, 63, 26, 15, 14, 11, 6, 127, 53, 31, 19, 17, 13, 7, 255, 80, 47, 24, 23, 20, 15, 8, 511, 161, 63, 49, 29, 27, 23, 17, 9, 1023, 242, 127, 74, 35, 34, 31, 26, 19, 10, 2047, 485, 191, 99, 71, 41, 39, 35, 29, 21, 11, 4095, 728, 255
Offset: 1
Examples
T(8,4) =47 because 47, written 233 in base q=4, is the smallest number with digit sum 2+3+3=8=k in base q=4. The triangle reads T(k,q), k=1,2,..., 2<=q up to the diagonal, after which the values stay constant: 1 1 1 1 1 1 1 1 1 3 2 2 2 2 2 2 2 2 7 5 3 3 3 3 3 3 3 15 8 7 4 4 4 4 4 4 31 17 11 9 5 5 5 5 5 63 26 15 14 11 6 6 6 6 127 53 31 19 17 13 7 7 7 255 80 47 24 23 20 15 8 8 511 161 63 49 29 27 23 17 9 1023 242 127 74 35 34 31 26 19 ...
Links
- H. Fredricksen, E. J. Ionascu, F. Luca, P. Stanica, Minimal Niven numbers, arXiv:0803.0477 [math.NT]
Programs
-
Maple
sd := proc(n,b) local i ; add(i,i=convert(n,base,b)) ; end: T := proc(k,q) local a; for a from 1 do if sd(a,q) = k then RETURN(a) ; fi ; od: end: for k from 1 to 20 do for q from 2 to k+1 do printf("%d, ",T(k,q)) ; od: od: