cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137246 a(n) is the ratio of the sum of the squares of the bends (curvatures) of the n-th generation of an Apollonian packing to the sum of the squares of the bends of the initial four-circle configuration.

This page as a plain text file.
%I A137246 #47 Sep 08 2022 08:45:32
%S A137246 1,17,339,6729,133563,2651073,52620771,1044462201,20731381707,
%T A137246 411494247537,8167690805619,162119333369769,3217883594978523,
%U A137246 63871313899461153,1267772627204287491,25163838602387366361,499473454166134464747,9913977567515527195857
%N A137246 a(n) is the ratio of the sum of the squares of the bends (curvatures) of the n-th generation of an Apollonian packing to the sum of the squares of the bends of the initial four-circle configuration.
%C A137246 These ratios are independent of the starting configuration. Similar ratios of third and higher moments are not so independent.
%C A137246 See A189226 for additional comments, references and links.
%H A137246 Vincenzo Librandi, <a href="/A137246/b137246.txt">Table of n, a(n) for n = 1..200</a> [a(188) corrected by _Georg Fischer_, May 24 2019]
%H A137246 J. C. Lagarias, C. L. Mallows, and Allan Wilks, <a href="http://arxiv.org/abs/math/0101066"> Beyond the Descartes Circle Theorem</a>, arXiv:math/0101066 [math.MG], 2001.
%H A137246 J. C. Lagarias, C. L. Mallows, and Allan Wilks, <a href="http://www.jstor.org/stable/2695498"> Beyond the Descartes Circle Theorem</a>, Amer. Math Monthly, 109 (2002), 338-361.
%H A137246 C. L. Mallows, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Mallows/mallows8.html">Growing Apollonian Packings</a>, J. Integer Sequences, 12 (2009), article 09.2.1, page 3.
%H A137246 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (20,-3).
%F A137246 For n >= 4, a(n) = 20*a(n-1) - 3*a(n-2).
%F A137246 O.g.f.: x*(1-x)*(1-2*x)/(1-20*x+3*x^2). - _R. J. Mathar_, Mar 31 2008
%F A137246 a(n) = ((41+sqrt(97))*(10+sqrt(97))^(n-1) - (41-sqrt(97))*(10-sqrt(97))^(n-1))/(6*sqrt(97)) for n>1. - _Bruno Berselli_, Jul 04 2011
%e A137246 Starting with the configuration with bends (-1,2,2,3) with sum(bends^2) = 18, the next generation contains four circles with bends 3,6,6,15. The sum of their squares is 306 = 18*a(2). The third generation has 12 circles with sum(bends^2) = 6102 = 18*a(3).
%t A137246 CoefficientList[Series[(2z^2-3z+1)/(3z^2-20z+1), {z, 0, 30}], z] (* and *) LinearRecurrence[{20, -3}, {1, 17, 339}, 30] (* _Vladimir Joseph Stephan Orlovsky_, Jul 03 2011 *)
%o A137246 (PARI) Vec(x*(1-2*x)*(1-x)/(1-20*x+3*x^2)+O(x^30)) \\ _Charles R Greathouse IV_, Jul 03 2011
%o A137246 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!(x*(1-x)*(1-2*x)/(1-20*x+3*x^2)));  // _Bruno Berselli_, Jul 04 2011
%o A137246 (Sage) a=(x*(1-x)*(1-2*x)/(1-20*x+3*x^2)).series(x, 30).coefficients(x, sparse=False); a[1:] # _G. C. Greubel_, May 24 2019
%o A137246 (GAP) a:=[1,17,339];; for n in [4..30] do a[n]:=20*a[n-1]-3*a[n-2]; od; a; # _G. C. Greubel_, May 24 2019
%Y A137246 Cf. A135849, A105970, A189226, A189227.
%K A137246 easy,nonn
%O A137246 1,2
%A A137246 _Colin Mallows_, Mar 09 2008