This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137268 #17 Nov 29 2022 01:33:24 %S A137268 1,2,2,4,6,6,8,18,24,24,16,54,96,120,120,32,162,384,600,720,720,64, %T A137268 486,1536,3000,4320,5040,5040,128,1458,6144,15000,25920,35280,40320, %U A137268 40320,256,4374,24576,75000,155520,246960,322560,362880,362880 %N A137268 Triangle T(n, k) = k! * (k+1)^(n-k), read by rows. %C A137268 Essentially the same as A104001. %H A137268 G. C. Greubel, <a href="/A137268/b137268.txt">Rows n = 1..50 of the triangle, flattened</a> %H A137268 Fan Chung and R. L. Graham, <a href="http://www.jstor.org/stable/27642443">Primitive juggling sequences</a>, Am. Math. Monthly 115 (3) (2008) 185-194. %F A137268 J(b, n) = (b+1)^(n-b)*b! if n > b, otherwise n! (notation of Chung and Graham). %F A137268 From _G. C. Greubel_, Nov 28 2022: (Start) %F A137268 T(n, k) = k! * (k+1)^(n-k). %F A137268 T(n, n-2) = 2*A074143(n), n > 1. %F A137268 T(2*n, n) = A152684(n). %F A137268 T(2*n, n-1) = A061711(n). %F A137268 T(2*n+1, n+1) = A066319(n). (End) %e A137268 Triangle begins as: %e A137268 1; %e A137268 2, 2; %e A137268 4, 6, 6; %e A137268 8, 18, 24, 24; %e A137268 16, 54, 96, 120, 120; %e A137268 32, 162, 384, 600, 720, 720; %e A137268 64, 486, 1536, 3000, 4320, 5040, 5040; %e A137268 128, 1458, 6144, 15000, 25920, 35280, 40320, 40320; %e A137268 256, 4374, 24576, 75000, 155520, 246960, 322560, 362880, 362880; %e A137268 512, 13122, 98304, 375000, 933120, 1728720, 2580480, 3265920, 3628800, 3628800; %t A137268 T[n_, k_]:= k!*(k+1)^(n-k); %t A137268 Table[T[n, k], {n, 12}, {k, n}]//Flatten %o A137268 (Magma) [Factorial(k)*(k+1)^(n-k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Nov 28 2022 %o A137268 (SageMath) %o A137268 def A137268(n,k): return factorial(k)*(k+1)^(n-k) %o A137268 flatten([[A137268(n,k) for k in range(1,n+1)] for n in range(14)]) # _G. C. Greubel_, Nov 28 2022 %Y A137268 Cf. A061711, A066319, A074143, A104001, A152684. %K A137268 nonn,tabl,easy %O A137268 1,2 %A A137268 _Roger L. Bagula_, Mar 12 2008 %E A137268 Edited by _G. C. Greubel_, Nov 28 2022