cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137277 Triangle of the coefficients [x^k] P_n(x) of the polynomials P_n(x) = 1/n * sum(j=0..floor(n/2), (-1)^j * binomial(n,j) * (n-4*j) * x^(n-2*j) ).

Table of values

n a(n)
0 1
1 0
2 1
3 2
4 0
5 1
6 0
7 1
8 0
9 1
10 -6
11 0
12 0
13 0
14 1
15 0
16 -6
17 0
18 -1
19 0
20 1
21 20
22 0
23 -5
24 0
25 -2
26 0
27 1
28 0
29 25
30 0
31 -3
32 0
33 -3
34 0
35 1
36 -70
37 0
38 28
39 0
40 0
41 0
42 -4
43 0
44 1
45 0
46 -98
47 0
48 28
49 0
50 4
51 0
52 -5
53 0
54 1
55 252
56 0
57 -126
58 0
59 24
60 0
61 9
62 0
63 -6
64 0
65 1
66 0
67 378
68 0
69 -150
70 0
71 15
72 0
73 15
74 0
75 -7
76 0
77 1
78 -924
79 0
80 528
81 0
82 -165
83 0
84 0
85 0
86 22
87 0
88 -8
89 0
90 1
91 0
92 -1452

List of values

[1, 0, 1, 2, 0, 1, 0, 1, 0, 1, -6, 0, 0, 0, 1, 0, -6, 0, -1, 0, 1, 20, 0, -5, 0, -2, 0, 1, 0, 25, 0, -3, 0, -3, 0, 1, -70, 0, 28, 0, 0, 0, -4, 0, 1, 0, -98, 0, 28, 0, 4, 0, -5, 0, 1, 252, 0, -126, 0, 24, 0, 9, 0, -6, 0, 1, 0, 378, 0, -150, 0, 15, 0, 15, 0, -7, 0, 1, -924, 0, 528, 0, -165, 0, 0, 0, 22, 0, -8, 0, 1, 0, -1452]