This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137280 #21 Jan 15 2025 10:23:55 %S A137280 1,10,37,181,802,3673,16633,75610,343261,1559053,7079986,32153329, %T A137280 146019889,663132970,3011538133,13676545189,62110402498,282067023817, %U A137280 1280973888937,5817390833530,26418989723149,119978705004157,544869043074514,2474458064252641,11237457494279521 %N A137280 a(n) = 3*a(n-1) + 7*a(n-2), with a(1) = 1, a(2) = 10. %C A137280 a(n) == 1 mod 9. %C A137280 a(n)/a(n-1) tends to 4.54138126... = (3 + sqrt(37))/2. %H A137280 Andrew Howroyd, <a href="/A137280/b137280.txt">Table of n, a(n) for n = 1..500</a> %H A137280 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,7) %F A137280 a(1) = 1, a(2) = 10, a(n) = 3*a(n-1) + 7*a(n-2) for n>2. %F A137280 a(n) = upper left term in [1,3; 3,2]^n %F A137280 From _R. J. Mathar_, Mar 17 2008: (Start) %F A137280 O.g.f.: x*(1+7*x)/(1-3*x-7*x^2). %F A137280 a(n) = A015524(n) + 7*A015524(n-1). (End) %e A137280 a(4) = 181 = 3*a(3) + 7*a(2) = 3*37 + 7*10. %e A137280 a(4) = 181 = upper left term in [1,3; 3,2]^4. %t A137280 LinearRecurrence[{3, 7}, {1, 10}, 25] (* _Paolo Xausa_, Jan 15 2025 *) %K A137280 nonn,easy %O A137280 1,2 %A A137280 _Gary W. Adamson_, Mar 14 2008 %E A137280 a(23) onwards from _Andrew Howroyd_, Jan 12 2025