cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340521 List of possible orders of automorphism groups of finite groups.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60
Offset: 1

Views

Author

Des MacHale, Feb 05 2021

Keywords

Comments

The terms shown here match the initial terms of all of A002174, A002202, A049225, but this is a strictly different sequence since it is known that it contains 3^7 = 2187 (which is the smallest odd term greater than 1), whereas for the other three sequences all terms greater than 1 are even.
This is a supersequence of A002202 since |Aut(Z/nZ)| = phi(n). - Jianing Song, Feb 05 2021
John Bray has produced a group G of order 3^2*19 = 171 such that |Aut G| = 1026 = 2.3^3.19. So 1026 is in the present sequence but is not in A002202. So the present sequence contains both odd and even terms not in A002202. - Des MacHale, Feb 10 2021
For more about this problem, see the references in A137315.

Crossrefs

A139795 Least m such that k>=m implies phi(k)>=n (where phi is the Euler totient function, sequence A000010).

Original entry on oeis.org

1, 3, 7, 7, 13, 13, 19, 19, 31, 31, 31, 31, 43, 43, 43, 43, 61, 61, 61, 61, 67, 67, 67, 67, 91, 91, 91, 91, 91, 91, 91, 91, 121, 121, 121, 121, 127, 127, 127, 127, 151, 151, 151, 151, 151, 151, 151, 151, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211
Offset: 1

Views

Author

Benoit Jubin, May 21 2008

Keywords

Comments

Define b(n)=A006511(m)+1 where m is the unique integer such that A002202(m)A002202(m+1) (with the convention A002202(0)=A006511(0)=0). Then a(1)=b(1) and a(n+1)=max(a(n),b(n+1)).
The sequence a(n) without the repetitions is 1+A036913(n).

Examples

			a(5)=13 because if k>=13, then phi(k)>=5, but phi(12)=4.
		

Crossrefs

Different from A137315 (see Comments in that entry).

Programs

  • PARI
    {m=0;for(n=1,100,print1(m+1,",");trap(,0,m=max(m,vecmax(invphi(n)))))}

A341825 Number of finite groups G with |Aut(G)| = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 6, 0, 7, 0, 2, 0, 9, 0, 0, 0, 11, 0, 4, 0, 7, 0, 2, 0, 22, 0, 0, 0, 2, 0, 2, 0, 19, 0, 0, 0, 12, 0, 0, 0, 14, 0, 7, 0, 3, 0, 2, 0
Offset: 1

Views

Author

Des MacHale, Mar 02 2021

Keywords

Comments

The smallest odd index n > 1 for which a(n) > 0 is 2187 = 3^7 (see A340521).
There exist even indices n that are not values taken by totient function phi (A002202) for which a(n) > 0. For example, John Bray has produced a group G that is the semidirect product 19:9 of order 3^2*19 = 171 such that |Aut(G)| = 1026 = 2*3^3*19.

Examples

			a(6) = 6, because there are six groups G with |Aut(G)| = 6. Four  cyclic groups: Aut(C_7) = Aut(C_9) = Aut(C_14) = Aut(C_18) ~~ C_6, and also Aut(C_2 x C_2) = Aut(S_3) ~~ S_3, where ~~ stands for “isomorphic to”. - _Bernard Schott_, Mar 02 2021
a(8) = 7, because there are seven groups G with |Aut(G)| = 8.
		

Crossrefs

Formula

a(2) = 3, a(p) = 0 if p odd prime.
a(A002202(n)) > 0, since |Aut(C_n)| = phi(n).
Showing 1-3 of 3 results.