This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137316 #25 Feb 28 2024 13:26:54 %S A137316 1,1,2,2,6,4,2,6,6,4,8,8,24,168,6,48,4,20,10,4,12,12,12,24,12,6,42,8, %T A137316 8,16,16,16,32,32,32,32,48,64,96,192,192,20160,16,6,12,48,54,432,18,8, %U A137316 20,24,40,40,12,42,10,110,22,8,16,16,24,24,24,24,24,24,48,48,48,48,144,336 %N A137316 Array read by rows: T(n,k) is the number of automorphisms of the k-th group of order n, where the ordering is such that the rows are nondecreasing. %C A137316 The length of the n-th row is A000001(n). %C A137316 The largest value of the n-th row is A059773(n). %C A137316 The number phi(n) = A000010(n) appears in the n-th row. %H A137316 D. MacHale and R. Sheehy, <a href="http://www.jstor.org/stable/40656888">Finite groups with few automorphisms</a>, Math. Proc. Roy. Irish Acad., 104A(2) (2004), 231--238. %e A137316 The table begins as follows: %e A137316 1 %e A137316 1 %e A137316 2 %e A137316 2 6 %e A137316 4 %e A137316 2 6 %e A137316 6 %e A137316 4 8 8 24 168 %e A137316 6 48 %e A137316 4 20 %e A137316 10 %e A137316 4 12 12 12 24 %e A137316 12 %e A137316 6 42 %e A137316 The first row with two numbers corresponds to the two groups of order 4, the cyclic group Z_4 and the Klein group Z_2 x Z_2, whose automorphism groups are respectively the group (Z_4)^* = Z_2 and the symmetric group S_3. %o A137316 (GAP) # GAP 4 %o A137316 Print("\n") ; %o A137316 for o in [ 1 .. 33 ] do %o A137316 n := NumberSmallGroups(o) ; %o A137316 og := [] ; %o A137316 for i in [1 .. n] do %o A137316 g := SmallGroup(o,i) ; %o A137316 H := AutomorphismGroup(g) ; %o A137316 ho := Order(H) ; %o A137316 Add(og,ho) ; %o A137316 od; %o A137316 Sort(og) ; %o A137316 Print(og) ; %o A137316 Print("\n") ; %o A137316 od; # _R. J. Mathar_, Jul 13 2013 %Y A137316 Cf. A064767, A060249, A060817, A062771, A060249, A002618, A061350. %K A137316 nonn,tabf %O A137316 1,3 %A A137316 _Benoit Jubin_, Apr 06 2008, Apr 15 2008