A138565 Array read by rows: T(n,k) is the number of automorphisms of the k-th Abelian group of order n, where the ordering is such that the rows are nondecreasing.
1, 1, 2, 2, 6, 4, 2, 6, 4, 8, 168, 6, 48, 4, 10, 4, 12, 12, 6, 8, 8, 16, 96, 192, 20160, 16, 6, 48, 18, 8, 24, 12, 10, 22, 8, 16, 336, 20, 480, 12, 18, 108, 11232, 12, 36, 28, 8, 30, 16, 32, 128, 384, 1536, 21504, 9999360, 20, 16, 24, 12, 36, 96, 288, 36, 18, 24, 16, 32, 672
Offset: 1
Examples
The table begins as follows: 1 1 2 2 6 4 2 6 4 8 168 6 48 4 10 4 12 The first row with two numbers corresponds to the two Abelian groups of order 4, the cyclic group C_4 and the Klein group C_2 x C_2, whose automorphism groups are respectively the group (C_4)^x = C_2 and the symmetric group S_3.
Links
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- D. MacHale and R. Sheehy, Finite groups with few automorphisms, Math. Proc. Roy. Irish Acad., 104A(2) (2004), 231--238.
Programs
-
GAP
Print("\n") ; for o in [ 1 .. 40 ] do n := NumberSmallGroups(o) ; og := [] ; for i in [1 .. n] do g := SmallGroup(o,i) ; if IsAbelian(g) then H := AutomorphismGroup(g) ; ho := Order(H) ; Add(og,ho) ; fi ; od; Sort(og) ; Print(og) ; Print("\n") ; od; # R. J. Mathar, Jul 13 2013
Comments