This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137364 #15 Jun 04 2014 00:50:31 %S A137364 83,179,227,347,419,419,467,491,563,587,659,659,827,971,1019,1019, %T A137364 1091,1259,1427,1499,1499,1667,1811,1811,1907,1907,1979,1979,2027, %U A137364 2243,2267,2339,2339,2531,2579,2699,2819,2843,2939,3347,3539,3539,3659,3659,3779 %N A137364 Prime numbers n such that n = p1^2 + p2^2 + p3^2, a sum of squares of 3 distinct prime numbers. %C A137364 Multiple solutions with different sets {p1,p2,p3} are indicated by repeating the entry for each solution. - _R. J. Mathar_, Apr 12 2008 %C A137364 All terms are congruent to 5 modulo 6. The smallest of the primes {p1,p2,p3} is always 3. - _Zak Seidov_, Jun 03 2014 %H A137364 Vincenzo Librandi, <a href="/A137364/b137364.txt">Table of n, a(n) for n = 1..1000</a> %e A137364 83 = 3^2 + 5^2 + 7^2; %e A137364 179 = 3^2 + 7^2 + 11^2; %e A137364 227 = 3^2 + 7^2 + 13^2. %t A137364 Array[r, 99]; Array[y, 99]; For[i = 0, i < 10^2, r[i] = y[i] = 0; i++ ]; z = 4^2; n = 0; For[i1 = 1, i1 < z, a = Prime[i1]; a2 = a^2; For[i2 = i1 + 1, i2 < z, b = Prime[i2]; b2 = b^2; For[i3 = i2 + 1, i3 < z, c = Prime[i3]; c2 = c^2; p = a2 + b2 + c2; If[PrimeQ[p], Print[a2, " + ", b2, " + ", c2, " = ", p]; n++; r[n] = p]; i3++ ]; i2++ ]; i1++ ]; Sort[Array[r, 39]] %t A137364 lst= {}; Do[p = Prime[q]^2 + Prime[r]^2 + Prime[s]^2; If[PrimeQ@p, AppendTo[lst, p]], {q, 26}, {r, q-1}, {s, r-1}]; Take[Sort@lst,72] (* _Vincenzo Librandi_, Jun 15 2013 *) %Y A137364 Cf. A182479, A243342. - _Zak Seidov_, Jun 03 2014 %K A137364 nonn,easy %O A137364 1,1 %A A137364 _Vladimir Joseph Stephan Orlovsky_, Apr 09 2008 %E A137364 More terms from _R. J. Mathar_, Apr 12 2008