This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137374 #28 Feb 16 2025 08:33:07 %S A137374 2,1,4,1,6,1,8,8,1,20,10,1,16,36,12,1,56,56,14,1,32,128,80,16,1,144, %T A137374 240,108,18,1,64,400,400,140,20,1,352,880,616,176,22,1,128,1152,1680, %U A137374 896,216,24,1,832,2912,2912,1248,260,26,1,256,3136,6272,4704,1680,308,28,1 %N A137374 Triangular array of the coefficients of the Jacobsthal-Lucas polynomials ordered by descending powers, read by rows. %C A137374 The even rows which start with 4, 8, 16 ... appear to be the absolute values of the Riordan array A128414. - _Georg Fischer_, Feb 25 2020 %H A137374 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Jacobsthal-LucasPolynomial.html">Jacobsthal-Lucas Polynomial</a>. %F A137374 Let p(n, x) = 2*x*p(n-2, x) + p(n-1, x) with p(0, x) = 2 and p(1, x) = 1. The coefficients of the polynomial p(n, x), listed in reverse order, give row n. - _Jinyuan Wang_, Feb 25 2020 %e A137374 The triangle starts: %e A137374 2; %e A137374 1; %e A137374 4, 1; %e A137374 6, 1; %e A137374 8, 8, 1; %e A137374 20, 10, 1; %e A137374 16, 36, 12, 1; %e A137374 56, 56, 14, 1; %e A137374 32, 128, 80, 16, 1; %e A137374 144, 240, 108, 18, 1; %e A137374 64, 400, 400, 140, 20, 1; %e A137374 352, 880, 616, 176, 22, 1; %e A137374 ... %p A137374 b:= proc(n) option remember; %p A137374 `if`(n<2, 2-n, b(n-1)+2*expand(x*b(n-2))) %p A137374 end: %p A137374 T:= n-> (p-> (d-> seq(coeff(p, x, d-i), i=0..d))(degree(p)))(b(n)): %p A137374 seq(T(n), n=0..20); # _Alois P. Heinz_, Feb 25 2020 %t A137374 f[0] = 2; f[1] = 1; f[n_] := 2 x f[n - 2] + f[n - 1]; %t A137374 Table[Reverse[CoefficientList[f[n], x]], {n, 0, 14}] // Flatten (* _Jinyuan Wang_, Feb 25 2020 *) %Y A137374 Row sums give A014551. %Y A137374 Cf. A034807. %K A137374 nonn,tabf %O A137374 0,1 %A A137374 _Roger L. Bagula_, Apr 09 2008 %E A137374 Offset set to 0 by _Peter Luschny_, Feb 25 2020