cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137396 Triangle read by rows: row n gives the coefficients in the expansion of the chromatic polynomial of the n-cycle graphs.

This page as a plain text file.
%I A137396 #37 Feb 16 2025 08:33:07
%S A137396 0,0,-1,1,0,2,-3,1,0,-3,6,-4,1,0,4,-10,10,-5,1,0,-5,15,-20,15,-6,1,0,
%T A137396 6,-21,35,-35,21,-7,1,0,-7,28,-56,70,-56,28,-8,1,0,8,-36,84,-126,126,
%U A137396 -84,36,-9,1,0,-9,45,-120,210,-252,210,-120,45,-10,1,0,10
%N A137396 Triangle read by rows: row n gives the coefficients in the expansion of the chromatic polynomial of the n-cycle graphs.
%C A137396 The chromatic polynomial of an n-cycle graph is p(x;n) = (x - 1)^n + (-1)^n*(x - 1). - _Franck Maminirina Ramaharo_, Aug 11 2018
%D A137396 Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 353.
%H A137396 Amotz Bar-Noy, <a href="https://web.archive.org/web/20180417043918/http://www.sci.brooklyn.cuny.edu/~amotz/GC-ALGORITHMS/PRESENTATIONS/chromatic.pdf">Graph Algorithms, Chromatic Polynomials</a>.
%H A137396 Franck Ramaharo, <a href="https://arxiv.org/abs/1911.04528">Note on sequences A123192, A137396 and A300453</a>, arXiv:1911.04528 [math.CO], 2019.
%H A137396 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>
%H A137396 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CycleGraph.html">Cycle Graph</a>.
%F A137396 p(x;n) = (x - 2)*p(x;n-1) + (x - 1)*p(x;n-2).
%F A137396 From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start)
%F A137396 T(n,0) = 0 for n > 0, and T(n,1) = (n-1)*(-1)^(n-1) for n > 1.
%F A137396 T(n,k) = (-1)^(n - k)*binomial(n,k) for k > 1. (End)
%e A137396 Triangle begins:
%e A137396 n\k| 0   1    2     3     4     5     6     7     8    9   10 11
%e A137396 ----------------------------------------------------------------
%e A137396 1  | 0
%e A137396 2  | 0  -1    1
%e A137396 3  | 0   2   -3     1
%e A137396 4  | 0  -3    6    -4     1
%e A137396 5  | 0   4  -10    10    -5     1
%e A137396 6  | 0  -5   15   -20    15    -6     1
%e A137396 7  | 0   6  -21    35   -35    21    -7     1
%e A137396 8  | 0  -7   28   -56    70   -56    28    -8     1
%e A137396 9  | 0   8  -36    84  -126   126   -84    36    -9    1
%e A137396 10 | 0  -9   45  -120   210  -252   210  -120    45  -10    1
%e A137396 11 | 0  10  -55   165  -330   462  -462   330  -165   55  -11  1
%e A137396 ... reformatted and extended. - _Franck Maminirina Ramaharo_, Aug 11 2018
%o A137396 (Maxima)
%o A137396 t(n, k) := ratcoef((x - 1)^n + (-1)^n*(x - 1), x, k)$
%o A137396 T:[0]$
%o A137396 for n:2 thru 11 do T:append(T, makelist(t(n, k), k, 0, n))$
%o A137396 T; /* _Franck Maminirina Ramaharo_, Aug 11 2018 */
%Y A137396 Cf. A123192, A300453.
%K A137396 tabf,sign
%O A137396 1,6
%A A137396 _Roger L. Bagula_, Apr 10 2008
%E A137396 Edited, new name, and corrected by _Franck Maminirina Ramaharo_, Aug 11 2018