A137397 Number of distinct palindromic subwords in the binary representation of n.
2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0
Examples
For n=10 the binary representation is A007088(10)=1010, which contains the a(10)=5 palindromic substrings {}, {0}, {1}, {101}, {010}. The empty subword is always included in the count.
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..10000
- A. Glen, J. Justin, S. Widmer, and L. Q. Zamboni, Palindromic Richness, arXiv:0801.1656 [math.CO], 2008.
Crossrefs
Cf. A070941.
Programs
-
Python
def ispal(s): return s == s[::-1] def a(n): s = bin(n)[2:] return 1 + len(set(s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1) if ispal(s[i:j]))) print([a(n) for n in range(105)]) # Michael S. Branicky, Feb 02 2021
Comments