This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137422 #17 Apr 02 2022 17:46:50 %S A137422 0,1,1,0,1,1,-1,-1,2,2,0,-3,-3,4,4,1,1,-8,-8,8,8,0,5,5,-20,-20,16,16, %T A137422 -1,-1,18,18,-48,-48,32,32,0,-7,-7,56,56,-112,-112,64,64,1,1,-32,-32, %U A137422 160,160,-256,-256,128,128,0,9,9,-120,-120,432,432,-576,-576,256,256 %N A137422 Triangle T(n,k) = A053120(n-1,k) + A053120(n-1,k-1), read by rows. %C A137422 Row sums are 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... %e A137422 Triangle begins %e A137422 0; %e A137422 1, 1; %e A137422 0, 1, 1; %e A137422 -1, -1, 2, 2; %e A137422 0, -3, -3, 4, 4; %e A137422 1, 1, -8, -8, 8, 8; %e A137422 0, 5, 5, -20, -20, 16, 16; %e A137422 -1, -1, 18, 18, -48, -48, 32, 32; %e A137422 0, -7, -7, 56, 56, -112, -112, 64, 64; %e A137422 1, 1, -32, -32, 160, 160, -256, -256, 128, 128; %e A137422 0, 9, 9, -120, -120, 432, 432, -576, -576, 256, 256; %p A137422 A053120 := proc(n, k) %p A137422 if n <0 or k <0 then %p A137422 0 ; %p A137422 else %p A137422 T(n, x) ; %p A137422 coeftayl(%, x=0, k) ; %p A137422 end if; %p A137422 end proc: %p A137422 A137422 := proc(n,k) %p A137422 A053120(n-1,k)+A053120(n-1,k-1) %p A137422 end proc: # _R. J. Mathar_, Sep 10 2013 %t A137422 (* Chebyshev A053120 polynomials*) (* Recursive root shifted polynomials*) Q[x, 0] = 1; Q[x, 1] = x + 1; Q[x_, n_] := (x + 1)*ChebyshevT[n - 1, x]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a0 = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a0] %Y A137422 Cf. A053120. %K A137422 tabl,sign %O A137422 0,9 %A A137422 _Roger L. Bagula_ and _Gary W. Adamson_, Apr 16 2008 %E A137422 T(0,0) set to a rationalized 0. - _R. J. Mathar_, Sep 10 2013