This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137437 #14 Feb 05 2023 09:23:14 %S A137437 1,0,0,0,-2,0,6,0,-24,0,120,40,0,-720,-420,0,5040,3948,0,-40320, %T A137437 -38304,-2240,0,362880,396576,50400 %N A137437 Triangular sequence from expansion coefficients of asymptotic Hermite Polynomial from Roman: p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)]. %C A137437 Absolute values of row sums give A038205. %D A137437 Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 130. %F A137437 p(x,t)= (1 + t)^(-x)*Exp[x*(t - t^2/2)]=Sum[q(x,n)*t^n/n!,{n,0,Infinity}]; out(n,m)=n!*Coefficients(q(x,n)). %e A137437 {1}, %e A137437 {0}, %e A137437 {0}, %e A137437 {0, -2}, %e A137437 {0, 6}, %e A137437 {0, -24}, %e A137437 {0, 120, 40}, %e A137437 {0, -720, -420}, %e A137437 {0, 5040, 3948}, %e A137437 {0, -40320, -38304, -2240}, %e A137437 {0, 362880, 396576, 50400} %t A137437 p[t_] := (1 + t)^(-x)*Exp[x*(t - t^2/2)]; %t A137437 Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; %t A137437 a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; %t A137437 Flatten[{{1}, {0}, {0}, {0, -2}, {0, 6}, {0, -24}, {0, 120, 40}, {0, -720, -420}, {0, 5040, 3948}, {0, -40320, -38304, -2240}, {0, 362880, 396576, 50400}}] %Y A137437 Cf. A038205, A137286. %K A137437 uned,tabf,sign %O A137437 1,5 %A A137437 _Roger L. Bagula_, Apr 21 2008