cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137454 Irregular triangle read by rows: coefficients of polynomials p(x, n) where p(x,n) = x^2*p(x,n-1) + (-x-1)*p(x,n-2) + p(x,n-3).

This page as a plain text file.
%I A137454 #17 May 06 2018 01:57:25
%S A137454 1,-1,-1,1,-1,-1,-1,-1,1,2,2,-1,-2,-1,-1,1,0,1,5,4,-1,-3,-1,-1,1,-3,
%T A137454 -5,-2,3,9,6,-1,-4,-1,-1,1,2,1,-10,-16,-6,6,14,8,-1,-5,-1,-1,1,3,9,14,
%U A137454 4,-23,-34,-12,10,20,10,-1,-6,-1,-1,1,-5,-8,10,38,45,10,-44,-60,-20,15,27,12,-1,-7,-1,-1,1,-1,-11,-38,-42,23,101,105,20
%N A137454 Irregular triangle read by rows: coefficients of polynomials p(x, n) where p(x,n) = x^2*p(x,n-1) + (-x-1)*p(x,n-2) + p(x,n-3).
%F A137454 p(x,-1)=0; p(x,0)=1; p(x,1) = x^2 - x - 1; p(x,n) = x^2*p(x,n-1) + (-x-1)*p(x,n-2) + p(x,n-3).
%e A137454 {1},
%e A137454 {-1, -1, 1},
%e A137454 {-1, -1, -1, -1, 1},
%e A137454 {2, 2, -1, -2, -1, -1, 1},
%e A137454 {0, 1, 5, 4, -1, -3, -1, -1, 1},
%e A137454 {-3, -5, -2, 3,9, 6, -1, -4, -1, -1, 1},
%e A137454 {2, 1, -10, -16, -6, 6,14, 8, -1, -5, -1, -1, 1},
%e A137454 {3, 9,14, 4, -23, -34, -12, 10, 20, 10, -1, -6, -1, -1, 1},
%e A137454 {-5, -8, 10, 38, 45, 10, -44, -60, -20, 15,27, 12, -1, -7, -1, -1, 1},
%e A137454 {-1, -11, -38, -42, 23, 101, 105,20, -75, -95, -30, 21, 35, 14, -1, -8, -1, -1,1},
%e A137454 {8, 22, 11, -55, -144, -131, 45, 215, 205, 35, -118, -140, -42, 28, 44, 16, -1, -9, -1, -1, 1}
%t A137454 p[x, -1] = 0;
%t A137454 p[x, 0] = 1;
%t A137454 p[x, 1] = x^2 - x - 1;
%t A137454 p[x_, n_] := x^2*p[x, n - 1] + (-x - 1)*p[x, n - 2] + p[x, n - 3];
%t A137454 Table[Expand[p[x, n]], {n, 0, 10}];
%t A137454 a = Table[CoefficientList[p[x, n], x], {n, 0, 10}];
%t A137454 Flatten[a1]
%Y A137454 Cf. A084610.
%K A137454 tabf,easy,sign
%O A137454 0,10
%A A137454 _Roger L. Bagula_ and _Gary W. Adamson_, Apr 18 2008
%E A137454 Heavily edited and corrected by _Joerg Arndt_, Apr 30 2018