This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137478 #9 Sep 08 2022 08:45:32 %S A137478 1,1,1,2,4,1,6,18,9,1,30,120,90,20,1,240,1200,1200,400,40,1,3120, %T A137478 18720,23400,10400,1560,78,1,65520,458640,687960,382200,76440,5733, %U A137478 147,1,2227680,17821440,31187520,20791680,5197920,519792,19992,272,1 %N A137478 A triangle of recursive Fibonacci Lah numbers: f(n) = Fibonacci(n)*f(n - 1), L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)). %C A137478 Row sums are: {1, 2, 7, 34, 261, 3081, 57279, 1676641, 77766297, 5728225636, 671925730146, ...}. %D A137478 Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page86 %H A137478 G. C. Greubel, <a href="/A137478/b137478.txt">Rows n = 1..100 of triangle, flattened</a> %F A137478 With f(n) = Fibonacci(n)*f(n-1) then the triangle is formed by L(n, k) = binomial(n-1, k-1)*(f(n)/f(k)). %F A137478 With f(n) = Product_{j=1..n} Fibonacci(j) then the triangle is formed by T(n, k) = binomial(n-1, k-1)*(f(n)/f(k)). - _G. C. Greubel_, May 15 2019 %e A137478 Triangle begins as: %e A137478 1; %e A137478 1, 1; %e A137478 2, 4, 1; %e A137478 6, 18, 9, 1; %e A137478 30, 120, 90, 20, 1; %e A137478 240, 1200, 1200, 400, 40, 1; %e A137478 3120, 18720, 23400, 10400, 1560, 78, 1; %e A137478 65520, 458640, 687960, 382200, 76440, 5733, 147, 1; %t A137478 f[n_]:= Product[Fibonacci[j], {j, 1, n}]; Table[Binomial[n-1, k-1]* f[n]/f[k], {n, 1, 12}, {k, 1, n}]//Flatten (* _G. C. Greubel_, May 15 2019 *) %o A137478 (PARI) %o A137478 {f(n) = prod(j=1,n, fibonacci(j))}; %o A137478 {T(n,k) = binomial(n-1, k-1)*(f(n)/f(k))}; %o A137478 for(n=1, 12, for(k=1, n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, May 15 2019 %o A137478 (Magma) %o A137478 f:= func< n | (&*[Fibonacci(j): j in [1..n]]) >; %o A137478 [[Binomial(n-1,k-1)*(f(n)/f(k)): k in [1..n]]: n in [1..12]]; // _G. C. Greubel_, May 15 2019 %o A137478 (Sage) %o A137478 def f(n): return product(fibonacci(j) for j in (1..n)) %o A137478 [[binomial(n-1,k-1)*(f(n)/f(k)) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, May 15 2019 %Y A137478 Cf. A000045, A105278. %K A137478 nonn,tabl %O A137478 1,4 %A A137478 _Roger L. Bagula_, Apr 22 2008 %E A137478 Edited by _G. C. Greubel_, May 15 2019