This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137493 #21 Nov 18 2021 13:40:40 %S A137493 720,1008,1200,1584,1620,1872,2268,2352,2448,2592,2736,2800,3312,3564, %T A137493 3888,3920,4050,4176,4212,4400,4464,4608,5200,5328,5508,5808,5904, %U A137493 6156,6192,6768,6800,7452,7500,7600,7632,7938,8112,8496,8624,8784,9200,9396 %N A137493 Numbers with 30 divisors. %C A137493 Maple implementation: see A030513. %C A137493 Numbers of the form p^29 (subset of A122970), p*q^2*r^4 (A179669), p^4*q^5 (A179702), p^2*q^9 (like 4608) or p*q^14, where p, q and r are distinct primes. - _R. J. Mathar_, Mar 01 2010 %H A137493 T. D. Noe, <a href="/A137493/b137493.txt">Table of n, a(n) for n = 1..1000</a> %F A137493 A000005(a(n))=30. %t A137493 Select[Range[10000],DivisorSigma[0,#]==30&] (* _Harvey P. Dale_, Feb 18 2011 *) %o A137493 (PARI) is(n)=numdiv(n)==30 \\ _Charles R Greathouse IV_, Jun 19 2016 %o A137493 (PARI) list(lim)= %o A137493 { %o A137493 my(f=(v,s)->concat(v,listsig(lim,s,1))); %o A137493 Set(fold(f, [[], [29], [5, 4], [9, 2], [14, 1], [4, 2, 1]])); %o A137493 } %o A137493 listsig(lim, sig, coprime)= %o A137493 { %o A137493 my(e=sig[1]); %o A137493 if(#sig<2, %o A137493 if(#sig==0 || sig[1]==0, return(if(lim<1,[],[1]))); %o A137493 my(P=primes([2,sqrtnint(lim\1,e)])); %o A137493 if(coprime==1, return(if(e>1,apply(p->p^e,P),P))); %o A137493 P=select(p->gcd(p,coprime)==1, P); %o A137493 if(e>1, P=apply(p->p^e, P)); %o A137493 return(P); %o A137493 ); %o A137493 my(v=List(),ss=sig[2..#sig],t=leastOfSig(ss)); %o A137493 forprime(p=2,sqrtnint(lim\t,e), %o A137493 if(coprime%p, %o A137493 my(u=listsig(lim\p^e,ss,coprime*p)); %o A137493 for(i=1,#u, listput(v,p^e*u[i])); %o A137493 ) %o A137493 ); %o A137493 Vec(v); %o A137493 } \\ _Charles R Greathouse IV_, Nov 18 2021 %Y A137493 Cf. A137492 (29 divs), A139571 (31 divs). %K A137493 nonn %O A137493 1,1 %A A137493 _R. J. Mathar_, Apr 22 2008