A137510 Irregular triangle read by rows in which row n lists the divisors of n in the range 1 < d < n; or 0 if there are no such divisors.
0, 0, 0, 2, 0, 2, 3, 0, 2, 4, 3, 2, 5, 0, 2, 3, 4, 6, 0, 2, 7, 3, 5, 2, 4, 8, 0, 2, 3, 6, 9, 0, 2, 4, 5, 10, 3, 7, 2, 11, 0, 2, 3, 4, 6, 8, 12, 5, 2, 13, 3, 9, 2, 4, 7, 14, 0, 2, 3, 5, 6, 10, 15, 0, 2, 4, 8, 16, 3, 11, 2, 17, 5, 7, 2, 3, 4, 6, 9, 12, 18, 0, 2, 19, 3, 13, 2, 4, 5, 8, 10, 20, 0, 2, 3, 6, 7
Offset: 1
Examples
From _Omar E. Pol_, Nov 22 2010: (Start) The irregular triangle begins: 0; 0; 0; 2; 0; 2, 3; 0; 2, 4; 3; 2, 5; 0, 2, 3, 4, 6; (End)
Programs
-
Maple
for n from 1 to 80 do if isprime(n) or n = 1 then printf("0,") ; else dvs := sort(convert(numtheory[divisors](n) minus {1,n},list) ) ; for d in dvs do printf("%d,",d) ; od: fi ; od: # R. J. Mathar, May 23 2008 with(numtheory): A:=proc (n) local div: div:=divisors(n): `minus`(div, {div[tau(n)], div[1]}) end proc: for n to 35 do A(n) end do: a:=proc (n) if A(n)={} then 0 else seq(A(n)[j],j=1..tau(n)-2) end if end proc: for n to 35 do a(n) end do; # yields sequence in triangular form - Emeric Deutsch, May 25 2008
-
Mathematica
Array[Complement[Divisors@ #, {1, #}] &, {42}] /. {} -> {0} // Flatten (* Michael De Vlieger, Jan 16 2016 *)
Extensions
More terms from R. J. Mathar and Emeric Deutsch, May 23 2008
Comments