This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137597 #13 Aug 31 2023 10:54:36 %S A137597 1,2,1,5,5,1,15,22,9,1,52,99,61,14,1,203,471,385,135,20,1,877,2386, %T A137597 2416,1140,260,27,1,4140,12867,15470,9156,2835,455,35,1,21147,73681, %U A137597 102215,72590,28441,6230,742,44,1 %N A137597 Triangle read by rows: A008277 * A007318. %C A137597 Row sums = A035009 starting (1, 3, 11, 47, 227, ...). %H A137597 Michael De Vlieger, <a href="/A137597/b137597.txt">Table of n, a(n) for n = 1..11325</a> (rows n = 1..150, flattened) %H A137597 Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, <a href="https://arxiv.org/abs/2308.14183">Combinatorial Identities for Vacillating Tableaux</a>, arXiv:2308.14183 [math.CO], 2023. See p. 16. %F A137597 A008277 * A007318 as infinite lower triangular matrices. %e A137597 First few rows of the triangle: %e A137597 1; %e A137597 2, 1; %e A137597 5, 5, 1; %e A137597 15, 22, 9, 1; %e A137597 52, 99, 61, 14, 1; %e A137597 203, 471, 385, 135, 20, 1; %e A137597 ... %p A137597 T:= (n, k)-> add(Stirling2(n, j)*binomial(j-1, k-1), j=k..n): %p A137597 seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Sep 03 2019 %t A137597 Table[Sum[StirlingS2[n, j]*Binomial[j - 1, k - 1], {j, k, n}], {n, 9}, {k, n}] // Flatten (* _Michael De Vlieger_, Aug 31 2023 *) %Y A137597 Cf. A035009, A008277. %Y A137597 Cf. A126350. %K A137597 nonn,tabl %O A137597 1,2 %A A137597 _Gary W. Adamson_, Jan 29 2008