cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A137607 a(0)=361, a(n+1)=a(n)/2 if a(n) is even, else a(n+1)=a(0)-(a(n)+1)/2.

This page as a plain text file.
%I A137607 #14 Mar 31 2024 12:24:11
%S A137607 361,180,90,45,338,169,276,138,69,326,163,279,221,250,125,298,149,286,
%T A137607 143,289,216,108,54,27,347,187,267,227,247,237,242,121,300,150,75,323,
%U A137607 199,261,230,115,303,209,256,128,64,32,16,8,4,2,1,360,180,90,45,338,169,276,138,69,326,163,279,221,250,125,298,149,286,143,289,216,108,54,27,347,187,267,227,247,237,242,121,300,150,75,323,199,261,230,115,303,209,256,128,64,32,16,8,4,2,1,360
%N A137607 a(0)=361, a(n+1)=a(n)/2 if a(n) is even, else a(n+1)=a(0)-(a(n)+1)/2.
%C A137607 For n>=1, periodic with period 51. - _Vladeta Jovovic_, Apr 28 2008
%C A137607 The rule is the following: b(0)=361. If b(n-1) is divisible by 2 then b(n) = b(n-1)/2. If b(n-1) is not divisible by two then b(n) = b(0)-(b(n-1)+1)/2. It is periodic.
%H A137607 <a href="/index/Rec#order_51">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
%t A137607 NestList[If[Mod[#,2]==0,#/2,361-(#+1)/2]&,361,110] (* _Harvey P. Dale_, Mar 31 2024 *)
%o A137607 (PARI) A137607(n) = if( !n,361, for( i=0,n%51, n=if( i, if( n%2, 360-n\2, n\2), 360)); n) \\ _M. F. Hasler_, Apr 28 2008
%Y A137607 Cf. A096259.
%K A137607 nonn,less
%O A137607 0,1
%A A137607 _Yasutoshi Kohmoto_, Apr 23 2008
%E A137607 Clarified & extended by _Vladeta Jovovic_ and _M. F. Hasler_, Apr 28 2008
%E A137607 The initial term, 361, seems anomalous. This sequence violates the rule that entries in the OEIS should not depend on an arbitrary but large parameter. - _N. J. A. Sloane_, May 17 2008