This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137613 #88 Aug 12 2023 00:57:41 %S A137613 5,3,11,3,23,3,47,3,5,3,101,3,7,11,3,13,233,3,467,3,5,3,941,3,7,1889, %T A137613 3,3779,3,7559,3,13,15131,3,53,3,7,30323,3,60647,3,5,3,101,3,121403,3, %U A137613 242807,3,5,3,19,7,5,3,47,3,37,5,3,17,3,199,53,3,29,3,486041,3,7,421,23 %N A137613 Omit the 1's from Rowland's sequence f(n) - f(n-1) = gcd(n,f(n-1)), where f(1) = 7. %C A137613 Rowland proves that each term is prime. He says it is likely that all odd primes occur. %C A137613 In the first 5000 terms, there are 965 distinct primes and 397 is the least odd prime that does not appear. - _T. D. Noe_, Mar 01 2008 %C A137613 In the first 10000 terms, the least odd prime that does not appear is 587, according to Rowland. - _Jonathan Sondow_, Aug 14 2008 %C A137613 Removing duplicates from this sequence yields A221869. The duplicates are A225487. - _Jonathan Sondow_, May 03 2013 %H A137613 T. D. Noe, <a href="/A137613/b137613.txt">Table of n, a(n) for n = 1..5000</a> %H A137613 Jean-Paul Delahaye, <a href="https://www.pourlascience.fr/sr/logique-calcul/deconcertantes-conjectures-3819.php">Déconcertantes conjectures</a>, Pour la science, 5 (2008), 92-97. %H A137613 Brian Hayes, <a href="http://bit-player.org/2015/pumping-the-primes">Pumping the Primes</a>, bit-player, 19 August 2015. %H A137613 John Moyer, <a href="http://www.rsok.com/~jrm/source/find_primes_rowland/">Source code in C and C++ to print this sequence or sorted and unique values from this sequence</a>. [From John Moyer (jrm(AT)rsok.com), Nov 06 2009] %H A137613 Ivars Peterson, <a href="http://www.maa.org/mathtourist/mathtourist_8_8_08.html">A New Formula for Generating Primes</a>, The Mathematical Tourist. %H A137613 Eric S. Rowland, A simple prime-generating recurrence, Abstracts Amer. Math. Soc. 29 (No. 1, 2008), p. 50 (Abstract 1035-11-986). %H A137613 Eric S. Rowland, <a href="https://arxiv.org/abs/0710.3217">A natural prime-generating recurrence</a>, arXiv:0710.3217 [math.NT], 2007-2008. %H A137613 Eric S. Rowland, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL11/Rowland/rowland21.html">A natural prime-generating recurrence</a>, J. of Integer Sequences 11 (2008), Article 08.2.8. %H A137613 Eric Rowland, <a href="http://thenksblog.wordpress.com/2008/07/21/a-simple-recurrence-that-produces-complex-behavior-and-primes/">A simple recurrence that produces complex behavior ...</a>, A New Kind of Science blog. %H A137613 Eric Rowland, <a href="http://demonstrations.wolfram.com/PrimeGeneratingRecurrence/">Prime-Generating Recurrence</a>, Wolfram Demonstrations Project, 2008. %H A137613 Eric Rowland, <a href="https://www.youtube.com/watch?v=OpaKpzMFOpg">A Bizarre Way to Generate Primes</a>, YouTube video, 2023. %H A137613 Jeffrey Shallit, <a href="http://recursed.blogspot.com/2008/07/rutgers-graduate-student-finds-new.html">Rutgers Graduate Student Finds New Prime-Generating Formula</a>, Recursivity blog. %H A137613 Vladimir Shevelev, <a href="http://arxiv.org/abs/0911.3491">Generalizations of the Rowland theorem</a>, arXiv:0911.3491 [math.NT], 2009-2010. %H A137613 Wikipedia, <a href="http://en.wikipedia.org/wiki/Formula_for_primes#Recurrence_relation">Formula for primes</a>. %F A137613 Denote by Lpf(n) the least prime factor of n. Then a(n) = Lpf( 6-n+Sum_{i=1..n-1} a(i) ). - _Vladimir Shevelev_, Mar 03 2010 %F A137613 a(n) = A168008(2*n+4) (conjectured). - _Jon Maiga_, May 20 2021 %F A137613 a(n) = A020639(A190894(n)). - _Seiichi Manyama_, Aug 11 2023 %e A137613 f(n) = 7, 8, 9, 10, 15, 18, 19, 20, ..., so f(n) - f(n-1) = 1, 1, 1, 5, 3, 1, 1, ... and a(n) = 5, 3, ... . %e A137613 From _Vladimir Shevelev_, Mar 03 2010: (Start) %e A137613 a(1) = Lpf(6-1) = 5; %e A137613 a(2) = Lpf(6-2+5) = 3; %e A137613 a(3) = Lpf(6-3+5+3) = 11; %e A137613 a(4) = Lpf(6-4+5+3+11) = 3; %e A137613 a(5) = Lpf(6-5+5+3+11+3) = 23. (End) %p A137613 A137613_list := proc(n) %p A137613 local a, c, k, L; %p A137613 L := NULL; a := 7; %p A137613 for k from 2 to n do %p A137613 c := igcd(k,a); %p A137613 a := a + c; %p A137613 if c > 1 then L:=L,c fi; %p A137613 od; %p A137613 L end: %p A137613 A137613_list(500000); # _Peter Luschny_, Nov 17 2011 %t A137613 f[1] = 7; f[n_] := f[n] = f[n - 1] + GCD[n, f[n - 1]]; DeleteCases[Differences[Table[f[n], {n, 10^6}]], 1] (* _Alonso del Arte_, Nov 17 2011 *) %o A137613 (Haskell) %o A137613 a137613 n = a137613_list !! (n-1) %o A137613 a137613_list = filter (> 1) a132199_list %o A137613 -- _Reinhard Zumkeller_, Nov 15 2013 %o A137613 (PARI) %o A137613 ub=1000; n=3; a=9; while(n<ub, m=a\n; d=factor((m-1)*n-1)[1,1]; print1(d,", "); n=n+((d-1)\(m-1)); a=m*n; ); \\ _Daniel Constantin Mayer_, Aug 31 2014 %o A137613 (Python) %o A137613 from itertools import count, islice %o A137613 from math import gcd %o A137613 def A137613_gen(): # generator of terms %o A137613 a = 7 %o A137613 for n in count(2): %o A137613 if (b:=gcd(a,n)) > 1: yield b %o A137613 a += b %o A137613 A137613_list = list(islice(A137613_gen(),20)) # _Chai Wah Wu_, Mar 14 2023 %Y A137613 f(n) = f(n-1) + gcd(n, f(n-1)) = A106108(n) and f(n) - f(n-1) = A132199(n-1). %Y A137613 Cf. also A084662, A084663, A134734, A134736, A134743, A134744, A221869. %Y A137613 Cf. A020639, A168008, A190894, A231900. %K A137613 nonn %O A137613 1,1 %A A137613 _Jonathan Sondow_, Jan 29 2008, Jan 30 2008