This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137614 #15 Apr 01 2022 21:37:44 %S A137614 1,2,1,3,4,1,4,9,8,1,5,18,28,12,1,6,31,76,63,19,1,7,51,176,232,131,27, %T A137614 1,8,79,370,693,617,248,39,1,9,119,722,1821,2284,1458,450,53,1,10,173, %U A137614 1337,4338,7243,6553,3211,773,74,1 %N A137614 Triangle read by rows: A000012 * A047812 as infinite lower triangular matrices. %C A137614 Row sums = A014138: (1, 3, 8, 22, 64, 196, 625, ...). %C A137614 From _Petros Hadjicostas_, Jun 01 2020: (Start) %C A137614 We prove the claim above. From Guy (1992, 1993), we know that A000108(n) = Sum_{k=0..n-1} A047812(k) (the row sums of Parker's triangle are Catalan numbers). %C A137614 We then have Sum_{k=0..n-1} T(n,k) = Sum_{k=0..n-1} Sum_{s=k+1..n} A047812(s,k) = Sum_{s=1..n} Sum_{k=0..s-1} A047812(s,k) = Sum_{s=1..n} A000108(s) = A014138(n) because A014138 contains partial sums of the Catalan numbers. (End) %H A137614 R. K. Guy, <a href="/A007042/a007042_1.pdf">Parker's permutation problem involves the Catalan numbers</a>, preprint, 1992. (Annotated scanned copy) %H A137614 R. K. Guy, <a href="http://www.jstor.org/stable/2324467">Parker's permutation problem involves the Catalan numbers</a>, Amer. Math. Monthly 100 (1993), 287-289. %F A137614 T(n,k) = Sum_{s=k+1..n} A047812(s,k) for n >= 1 and 0 <= k <= n-1. - _Petros Hadjicostas_, Jun 01 2020 %e A137614 Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins: %e A137614 1; %e A137614 2, 1; %e A137614 3, 4, 1; %e A137614 4, 9, 8, 1; %e A137614 5, 18, 28, 12, 1; %e A137614 6, 31, 76, 63, 19, 1; %e A137614 7, 51, 176, 232, 131, 27, 1; %e A137614 ... %o A137614 (PARI) A(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) ); %o A137614 T(n,k) = sum(s=k+1, n, A(s,k)); %o A137614 vector(15, n, vector(n, k, T(n, k-1))) \\ _Petros Hadjicostas_, Jun 01 2020 %Y A137614 Cf. A000012, A014138, A047812. %K A137614 nonn,tabl %O A137614 0,2 %A A137614 _Gary W. Adamson_, Jan 30 2008