This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A137615 #47 Feb 16 2025 08:33:07 %S A137615 4,1,9,8,6,0,0,4,5,9,6,5,0,8,0,2,2,3,3,4,2,1,3,0,0,0,0,9,6,8,3,3,8,2, %T A137615 7,9,1,6,5,0,7,0,3,3,5,0,8,8,6,5,1,2,1,8,5,3,1,9,4,5,1,2,3,5,8,5,9,5, %U A137615 0,8,3,2,4,2,3,7,9,8,3,2,2,2,4,6,5,4,2,4,9,4,4,8,4,0,2,1,2,5,2,5,2 %N A137615 Decimal expansion of volume of the Meissner Body. %C A137615 The Meissner body is a three-dimensional generalization of the Reuleaux triangle having constant width 1. Although it is based on the Reuleaux tetrahedron, it is different from that. The Meissner body exists in two different versions. %D A137615 Johannes Boehm and E. Quaisser, Schoenheit und Harmonie geometrischer Formen - Sphaeroformen und symmetrische Koerper, Berlin: Akademie Verlag (1991), p. 71. %D A137615 G. D. Chakerian and H. Groemer, Convex Bodies of Constant Width, in: P. Gruber and J. Wills (Editors), Convexity and its Applications, Basel / Boston / Stuttgart: Birkhäuser (1983), p. 68. %D A137615 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.10 Reuleaux Triangle Constants, p. 513. %H A137615 Bernd Kawohl and Christof Weber, <a href="http://www.mi.uni-koeln.de/mi/Forschung/Kawohl/kawohl/pub100.pdf">Meissner's Mysterious Bodies</a>, Mathematical Intelligencer, Volume 33, Number 3, 2011, pp. 94-101. %H A137615 SwissEduc: Teaching and Learning Mathematics, <a href="http://www.swisseduc.ch/mathematik/geometrie/gleichdick/index-en.html">Bodies of Constant Width</a> (with information, animations and interactive pictures of both Meissner bodies) %H A137615 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/ReuleauxTriangle.html">Reuleaux Triangle</a>. %F A137615 Equals (2/3 - sqrt(3)/4 * arccos(1/3))* Pi. %e A137615 0.41986004596508022334213000096833827916507033508865... %t A137615 RealDigits[(2/3 - Sqrt[3]/4 * ArcCos[1/3])* Pi, 10, 120][[1]] (* _Amiram Eldar_, May 27 2023 *) %Y A137615 Cf. A102888, A137616, A137617, A137618. %K A137615 cons,easy,nonn %O A137615 0,1 %A A137615 _Christof Weber_, Feb 04 2008